Soal dan Pembahasan – Percobaan Bernoulli

[latexpage]

Soal Nomor 1
Jika peluang mendapatkan bola lampu yang rusak adalah $0,8$, tentukan peluang untuk mendapatkan bola lampu yang tidak rusak.

Penyelesaian

Peluang mendapatkan bola lampu yang rusak = $0,8$
Peluang mendapatkan bola lampu yang tak rusak = $1 – 0,8 = 0,2$

[collapse]

Soal Nomor 2
Sepuluh koin dilemparkan secara bersamaan di mana peluang untuk mendapatkan gambar untuk setiap koin adalah 0,6. Carilah peluang untuk mendapatkan 4 gambar.

Penyelesaian

Peluang mendapatkan gambar = $0,6$
Peluang mendapatkan angka = $1 – 0,6 = 0,4$
Peluang mendapatkan 4 gambar dari 10 kesempatan adalah
$P(X = 4) = C_{4}^{10}(0,6)^4(0,4)^6 = 0,111476736$

[collapse]

Soal Nomor 3
Dalam suatu ujian, 10 soal pilihan ganda dengan 4 pilihan diujikan. Hanya ada 1 pilihan yang benar. Tentukan peluang menjawab 5 soal dengan benar dari 10 soal yang diberikan tersebut.

Penyelesaian

Peluang menjawab soal dengan benar = $\dfrac{1}{4} = 0,25$
Peluang menjawab soal dengan salah  = $1 – 0,25= 0,75$
Peluang menjawab 5 soal dengan benar dari 10 soal yang diberikan adalah
$P(X = 5) = C_{5}^{10}(0,25)^5(0,75)^5 = 0,05839920044$

[collapse]

Soal Nomor 4
Besar kesempatan suatu tim memenangkan pertandingan adalah 0,7. Carilah peluang tim itu menang setidaknya 1 kali dari 3 kali pertandingan.

Penyelesaian

Peluang memenangkan pertandingan = $0,7$
Peluang tidak memenangkan pertandingan = $1 – 0,7 = 0,3$
Peluang menang 0 kali (berarti selalu kalah) dari 3 kali pertandingan adalah
$P(X = 0) = C_{0}^{3}(0,7)^0(0,3)^3 = 0,027$
Dengan demikian, peluang untuk memenangkan setidaknya 1 kali pertandingan dari 3 kali pertandingan adalah $1 – 0,027 = 0,973$

[collapse]

CategoriesTeori PeluangTags

Leave a Reply

Silakan beri tanggapan dan saran, tidak perlu sungkan. Mohon juga diinformasikan melalui kolom komentar ini bila ada kesalahan pengetikan sekecil apapun (typo atau bahasa latex yang error) atau kesalahan konsep dan pembahasan soal. Terima kasih. Ganbatte!

Your email address will not be published. Required fields are marked *