Soal dan Pembahasan – Ujian Akhir Semester (UAS) Kalkulus Integral

Berikut ini adalah 5 soal UAS Kalkulus Integral (TA 2017/2018) yang diujikan pada tanggal 15 Januari 2018 oleh Drs. Ade Mirza, M.Pd. Materi yang diujikan mengenai perhitungan volume benda dengan integral, fungsi transenden dan turunannya, serta teknik integrasi tingkat lanjut.

Soal Nomor 1
Susunlah integral yang sesuai untuk menentukan volume benda yang terbentuk dengan menunjukkan sketsa jalur potongan dan hampirannya dari daerah R yang dibatasi oleh y = x^{-3}, x = 1, x = 3, dan y = 0 apabila diputar mengelilingi:
a) Sumbu Y
b) Garis y =-1

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 2
Hitunglah volume daerah yang terbentuk dan perlihatkan cara menentukannya pada daerah R yang dibatasi oleh kurva y = x^2, y = 2, dan x = 0 dan diputar mengelilingi y = 2 

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Buktikan bahwa \sec(\tan^{-1} x) = \sqrt{1 + x^2}
(Gunakan hubungan \sec^2\beta = 1 + \tan^2 \beta)

Penyelesaian

Berangkat dari identitas trigonometri berikut.
\sec^2 \beta = 1 + \tan^2 \beta
Substitusi \beta = \tan^{-1} x, diperoleh
\sec^2 (\tan^{-1} x) = 1 + \tan^2 (\tan^{-1} x)
Gunakan fakta bahwa \tan(\tan^{-1} x) = x untuk mendapatkan
\sec^2 (\tan^{-1} x) = 1 + x^2
\sec(\tan^{-1} x) = \sqrt{1+x^2}
(Terbukti)

[collapse]



Soal Nomor 4
Tentukan \dfrac{dy}{dx} dari y =7 \cos^{-1}\sqrt{2x}

Penyelesaian

Ingat!!
\boxed{\dfrac{d}{dx} (\cos^{-1} u) = -\dfrac{u'}{\sqrt{1-u^2}}}
(u adalah fungsi dalam x)
Dalam kasus ini,
u =\sqrt{2x} \Rightarrow u' = \dfrac{1}{\sqrt{2x}}
Jadi, untuk y = 7 \cos^{-1}\sqrt{2x}
\dfrac{dy}{dx} = \dfrac{-7}{\sqrt{2x}\sqrt{1-2x}} = \boxed{-\dfrac{7}{\sqrt{2x -4x^2}}}

[collapse]

Soal Nomor 5
Selesaikan integral berikut.
a) \displaystyle \int \dfrac{dx}{x\sqrt{x^2+9}}
b) \displaystyle \int \sqrt{x} \ln x~dx
c) \displaystyle \int \dfrac{2x^2+x-4}{x^3-x^2-2x} ~dx

Penyelesaian

(Jawaban a) Substitusi
u = \sqrt{x^2+9} \Leftrightarrow x^2 = u^2-9
sehingga diperoleh
du = \dfrac{x}{\sqrt{x^2+9}}~dx atau ditulis
dx = \dfrac{\sqrt{x^2+9}} {x}
Jadi, integralnya dapat ditulis menjadi
\begin{aligned} \displaystyle \int \dfrac{1}{x\sqrt{x^2+9}} \times \dfrac{\sqrt{x^2+9}} {x} ~du & = \int \dfrac{1}{u^2-9}~du \\ & = \int \dfrac{1}{(u+3)(u-3)} ~du \end{aligned}
Selanjutnya, gunakan teknik dekomposisi pecahan parsial. Tinjau integrannya.
\begin{aligned} \dfrac{1}{(u+3)(u-3)} & = \dfrac{A}{u+3} + \dfrac{B} {u-3} \\ & = \dfrac{(A+B)u + (-3A+3B)}{(u+3)(u-3)} \end{aligned}
Diperoleh SPLDV
\begin{cases} A+B=0 \\ -3A+3B=1 \end{cases}
Selesaikan sehingga diperoleh A = - \dfrac{1}{6} dan B=\dfrac{1}{6}
Kembalikan pada integralnya.
\begin{aligned} \displaystyle \int \dfrac{1}{(u+3)(u-3)} ~du & = \int \left(-\dfrac{1}{6(u+3)} + \dfrac{1}{6(u-3)}\right)~du \\ & = \dfrac{1}{6}(\ln (u-3) - \ln (u+3)) + C \\ & = \dfrac{1}{6} \times \ln \left(\dfrac{u-3}{u+3}\right) + C\end{aligned}
Substitusikan kembali u = \sqrt{x^2+9}, sehingga diperoleh
\boxed{\dfrac{\ln \left(\dfrac{\sqrt{x^2+9} - 3}{\sqrt{x^2+9} + 3}\right)}{6} + C}

(Jawaban b)
Gunakan teknik integrasi parsial
\boxed{\int uv' = uv - \int u'v}
Misal u = \ln x dan v' = \sqrt{x}, berarti u' = \dfrac{1}{x} dan v = \dfrac{2x^{\frac{3}{2}}}{3}
Jadi, diperoleh
\begin{aligned} \dfrac{2x^{\frac{3}{2}} \ln x}{3} - \displaystyle \int \dfrac{1}{x} \times \dfrac{2}{3}x^{\frac{3}{2}} ~dx & = \dfrac{2x^{\frac{3}{2}} \ln x}{3} - \dfrac{2}{3} \displaystyle \int \sqrt{x}~dx \\ & = \dfrac{2x^{\frac{3}{2}} \ln x}{3} - \dfrac{4}{9}x^{\frac{3}{2}} + C \\ & = \boxed{\dfrac{2x^{\frac{3}{2}} (3 \ln x - 2)} {9} + C} \end{aligned}}

(Jawaban c) Gunakan metode dekomposisi pecahan parsial karena penyebutnya dapat difaktorkan. Tinjau integrannya.
\begin{aligned} \dfrac{2x^2+x-4}{x^3-x^2-2x} & = \dfrac{2x^2+x-4}{x(x-2)(x+1)} \\& = \dfrac{A}{x} + \dfrac{B}{x-2} + \dfrac{C}{x+1} \\ & = \dfrac{A(x-2)(x+1) +Bx(x+1) + C(x)(x-2)}{x(x-2)(x+1)} \\ & = \dfrac{(A+B+C)x^2 + (-A+B-2C)x - 2A}{x(x-2)(x+1)} \end{aligned}
Bandingkan pembilangnya untuk memperoleh SPLTV berikut.
\begin{cases} A+B+C=2 \\ -A+B-2C = 1 \\-2A = -4 \end{cases}
Selesaikan sehingga diperoleh A = 2, B = 1, dan C = -1
Jadi, dapat ditulis
\begin{aligned} \displaystyle \int \dfrac{2x^2+x-4}{x^3-x^2-2x} ~dx & = \int \left(\dfrac{2}{x} + \dfrac{1}{x-2} -\dfrac{1}{x+1}\right) ~dx \\ & = 2 \ln x + \ln (x - 2) -\ln (x +1) \\ &= \boxed{\ln \left(\dfrac{x^3-2x^2} {x+1}\right)} \end{aligned}

[collapse]

Ayo Beri Rating Postingan Ini

Soal dan Pembahasan – Ujian Akhir Semester (UAS) Kalkulus Lanjut

Berikut ini adalah 5 soal UAS Kalkulus Lanjut (TA 2017/2018) yang diujikan pada tanggal 11 Januari 2018 oleh Drs. Ade Mirza, M.Pd.

Soal Nomor 1
Buktikan bahwa \displaystyle \lim_{(x, y) \to (1, 1)} (2x^2 + y^2) = 3

Penyelesaian

Fungsi f(x, y) = z = (2x^2 + y^2) terdefinisi pada \mathbb{R}^2, dengan (1, 1) sebagai titik limitnya. Kita akan tunjukkan bahwa:
\boxed{\begin{aligned}\forall \epsilon > 0, & \exists \delta > 0 \ni 0 < ||(x, y) - (1, 1)|| \\ & < \delta \Rightarrow |f(x, y) - 3| < \epsilon \end{aligned} }
atau
\boxed{\begin{aligned} \forall \epsilon > 0, & \exists \delta > 0 \ni 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta \\ &  \Rightarrow |2x^2 + y^2 - 3| < \epsilon \end{aligned}}
Analisis:
\begin{aligned} |2x^2 + y^2 - 3| & = |2x^2 - 2 + y^2 - 1| \\ & = |2(x+1)(x-1) + (y+1)(y-1)| \\ & \leq 2|x+1||x-1| + |y+1||y-1| \end{aligned}
Untuk ini, kita harus membatasi faktor |x + 1| dan |y + 1| oleh suatu konstanta real.
Misalkan 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1 \bigstar, maka berlaku
0 < |x - 1| <  \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1
0 < |y - 1| < \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1
Akibatnya,
|x + 1| = |x - 1 + 2| \leq |x - 1| + 2 \leq 1 + 2 = 3
|y + 1| = |y - 1 + 2| \leq |y - 1| + 2 \leq 1 + 2 = 3
sehingga dari pemisalan tersebut, diperoleh
\begin{aligned} & 2|x+1||x-1| + |y+1||y-1| \leq 6|x - 1| + 3|y - 1| \\ & \leq 6\sqrt{(x-1)^2 + (y -1)^2} + 3\sqrt{(x-1)^2 + (y -1)^2} \\ & = 9\sqrt{(x-1)^2 + (y -1)^2} \\ & < 9\delta \end{aligned}
Dengan demikian, (langkah bukti):
Ambil sembarang \epsilon > 0, pilih \delta = \min\left\{1, \dfrac{1}{6}\epsilon\right\}, akibatnya jika 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta, maka berlaku
|2x^2 + y^2 - 3| < \epsilon
Jadi, terbukti bahwa \displaystyle \lim_{(x, y) \to (1, 1)} (2x^2 + y^2) = 3
Catatan \bigstar: Mengapa harus 1? Untuk mempermudah pembuktian/perhitungan, ambil bilangan bulat positif terkecil, yaitu 1 sebagai batas konstanta real yang dimaksud.

[collapse]

Soal Nomor 2
Gunakan integral ganda dua untuk menentukan luas daerah yang dibatasi oleh y = x^2 - 2 dan y = x

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Dengan menggunakan integral ganda dua, hitung isi benda yang terletak dalam silinder x^2 + z^2 = 9 dan x^2 + y^2 = 9

Penyelesaian

Klik sini untuk mengetahui representasi geometrik dan penjelasan yang lebih kompleks mengenai Steinmetz Solid (benda ruang yang diperoleh dari pengirisan/perpotongan dua atau lebih silinder)

Batas integrasi diberikan oleh
-3 \leq x \leq 3
-\sqrt{9 - x^2} \leq z \leq \sqrt{9 - x^2}
Jadi, volume bisilinder yang terbentuk ditentukan oleh
\begin{aligned} V & = \displaystyle \int_{-3}^{3} \int_{-\sqrt{9 - x^2}}^{\sqrt{9 - x^2}} 2\sqrt{9 - x^2}~dy~dx \bigstar \\ & = \int_{-3}^{3} \left[2\sqrt{9 - x^2}y\right]_{-\sqrt{9 - x^2}}^{\sqrt{9 - x^2}}~dx \\ & = \int_{-3}^{3} \left(2(9 - x^2) + 2(9 - x^2)\right)~dx \\ & = \left[36x - \dfrac{4}{3}x^3\right]_{-3}^{3} \\ & = 144~\text{satuan volume} \end{aligned}
Jadi, volume dari perpotongan dua silinder tersebut adalah 144 satuan volume.
Catatan \bigstar: Angka 2 pada integran didapat karena sifat kesimetrian.

[collapse]

Soal Nomor 4
Hitunglah integral berikut dengan mengubahnya dalam koordinat tabung terlebih dahulu.
\displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx

Penyelesaian

Ingat bahwa dalam sistem koordinat tabung, dV = dz~r~dr~d\theta (posisinya menyesuaikan integralnya)
Kita akan mengubah batas integralnya terlebih dahulu.
Integral ketiga memiliki batas yang tidak perlu diubah (untuk variabel z)
Integral kedua memiliki batas 0 < y < \sqrt{9 - x^2} \Leftrightarrow 0 < x^2 + y^2 < 9
Pertidaksamaan itu merupakan pertidaksamaan lingkaran dengan radius 3, sehingga diperoleh
0 \leq \theta \leq 2\pi
-3 \leq r \leq 3
Jadi,
\begin{aligned} \displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx  & = \int_{-3}^{3} \int_{0}^{2\pi} \int_{0}^{2} r^2~dz~d\theta~dr \\ & = \int_{-3}^{3} \int_{0}^{2\pi} 2r^2~d\theta~dr \\ & = \int_{-3}^{3} 4\pi r^2~dr \\ & = 72\pi \end{aligned}
Jadi, diperoleh \boxed{\displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx = 72\pi}

[collapse]

Soal Nomor 5
Perlihatkan dengan integral ganda dua bahwa volume bola berjari-jari r adalah \dfrac{4}{3}\pi r^3

Penyelesaian

Gunakan integral ganda dua (double integrals) dalam sistem koordinat polar. Persamaan umum bola yang berpusat di titik asal dan berjari-jari r adalah x^2 + y^2 + z^2 = r^2. Jika z dijadikan subjek persamaan, diperoleh z = \pm \sqrt{r^2 - x^2 - y^2}. Dalam koordinat polar, ditulis z = \pm \sqrt{r^2 - R^2}. Batas integral yang ditentukan oleh variabel R dan \theta, yaitu
0 \leq R \leq r
0 \leq \theta 2\phi
Karena bola bersifat simetris dengan bagian separuhnya, maka kita dapat menentukan volume bola dengan menghitung volume setengah bola dikali 2, yaitu
\begin{aligned} V & = \displaystyle 2 \int_D \int \sqrt{r^2 - R^2}~dA \\ & = 2 \int_{0}^{2\pi} \int_{0}^{r} \sqrt{r^2 - R^2}~R~dR~d\theta \\ & = 2 \int_{0}^{2\pi} \left[-\dfrac{1}{3}\left(r^2 - R^2\right)^{\frac{3}{2}}\right]_{0}^{r}~d\theta \\ & = \dfrac{2}{3} \int_{0}^{2\pi} r^3~d\theta \\ & = \dfrac{2}{3} \left[r^3\theta\right]_{0}^{2\pi} \\ & = \dfrac{4}{3}\pi r^3 \end{aligned}
(Terbukti)

[collapse]

Selanjutnya, soal berikut merupakan soal UAS tahun-tahun sebelumnya yang diharapkan dapat melengkapi ilmu kita bersama.

Soal Nomor 6 
Selidiki apakah fungsi berikut kontinu pada daerah definisinya.
f(x, y) = \begin{cases} \dfrac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}

Soal Nomor 7
Tentukan turunan parsial pertama dari f(x, y) = \tan^{-1} (x^2 + y^2)

Penyelesaian

Ingat!!
\boxed{\dfrac{d}{dx} (\tan^{-1} u) = \dfrac{u'}{1 + u^2}}
(u adalah fungsi terhadap variabel x)
Akan dicari turunan parsial pertama dari f(x, y) terhadap variabel x dan y.
(Turunan parsial pertama terhadap x)
Anggap x sebagai variabel dan y sebagai suatu konstanta.
\dfrac{\partial}{\partial x}(\tan^{-1} (x^2 + y^2) = \boxed{\dfrac{2x}{1 + (x^2 + y^2)^2}}
(Turunan parsial pertama terhadap y)
Anggap y sebagai variabel dan x sebagai suatu konstanta.
\dfrac{\partial}{\partial y}(\tan^{-1} (x^2 + y^2) = \boxed{\dfrac{2y}{1 + (x^2 + y^2)^2}}

[collapse]
Ayo Beri Rating Postingan Ini