Soal dan Pembahasan – Ujian Akhir Semester (UAS) Kalkulus Lanjut

Berikut ini adalah 5 soal UAS Kalkulus Lanjut (TA 2017/2018) yang diujikan pada tanggal 11 Januari 2018 oleh Drs. Ade Mirza, M.Pd.

Soal Nomor 1
Buktikan bahwa \displaystyle \lim_{(x, y) \to (1, 1)} (2x^2 + y^2) = 3

Penyelesaian

Fungsi f(x, y) = z = (2x^2 + y^2) terdefinisi pada \mathbb{R}^2, dengan (1, 1) sebagai titik limitnya. Kita akan tunjukkan bahwa:
\boxed{\begin{aligned}\forall \epsilon > 0, & \exists \delta > 0 \ni 0 < ||(x, y) - (1, 1)|| \\ & < \delta \Rightarrow |f(x, y) - 3| < \epsilon \end{aligned} }
atau
\boxed{\begin{aligned} \forall \epsilon > 0, & \exists \delta > 0 \ni 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta \\ &  \Rightarrow |2x^2 + y^2 - 3| < \epsilon \end{aligned}}
Analisis:
\begin{aligned} |2x^2 + y^2 - 3| & = |2x^2 - 2 + y^2 - 1| \\ & = |2(x+1)(x-1) + (y+1)(y-1)| \\ & \leq 2|x+1||x-1| + |y+1||y-1| \end{aligned}
Untuk ini, kita harus membatasi faktor |x + 1| dan |y + 1| oleh suatu konstanta real.
Misalkan 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1 \bigstar, maka berlaku
0 < |x - 1| <  \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1
0 < |y - 1| < \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1
Akibatnya,
|x + 1| = |x - 1 + 2| \leq |x - 1| + 2 \leq 1 + 2 = 3
|y + 1| = |y - 1 + 2| \leq |y - 1| + 2 \leq 1 + 2 = 3
sehingga dari pemisalan tersebut, diperoleh
\begin{aligned} & 2|x+1||x-1| + |y+1||y-1| \leq 6|x - 1| + 3|y - 1| \\ & \leq 6\sqrt{(x-1)^2 + (y -1)^2} + 3\sqrt{(x-1)^2 + (y -1)^2} \\ & = 9\sqrt{(x-1)^2 + (y -1)^2} \\ & < 9\delta \end{aligned}
Dengan demikian, (langkah bukti):
Ambil sembarang \epsilon > 0, pilih \delta = \min\left\{1, \dfrac{1}{6}\epsilon\right\}, akibatnya jika 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta, maka berlaku
|2x^2 + y^2 - 3| < \epsilon
Jadi, terbukti bahwa \displaystyle \lim_{(x, y) \to (1, 1)} (2x^2 + y^2) = 3
Catatan \bigstar: Mengapa harus 1? Untuk mempermudah pembuktian/perhitungan, ambil bilangan bulat positif terkecil, yaitu 1 sebagai batas konstanta real yang dimaksud.

[collapse]

Soal Nomor 2
Gunakan integral ganda dua untuk menentukan luas daerah yang dibatasi oleh y = x^2 - 2 dan y = x

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Dengan menggunakan integral ganda dua, hitung isi benda yang terletak dalam silinder x^2 + z^2 = 9 dan x^2 + y^2 = 9

Penyelesaian

Klik sini untuk mengetahui representasi geometrik dan penjelasan yang lebih kompleks mengenai Steinmetz Solid (benda ruang yang diperoleh dari pengirisan/perpotongan dua atau lebih silinder)

Batas integrasi diberikan oleh
-3 \leq x \leq 3
-\sqrt{9 - x^2} \leq z \leq \sqrt{9 - x^2}
Jadi, volume bisilinder yang terbentuk ditentukan oleh
\begin{aligned} V & = \displaystyle \int_{-3}^{3} \int_{-\sqrt{9 - x^2}}^{\sqrt{9 - x^2}} 2\sqrt{9 - x^2}~dy~dx \bigstar \\ & = \int_{-3}^{3} \left[2\sqrt{9 - x^2}y\right]_{-\sqrt{9 - x^2}}^{\sqrt{9 - x^2}}~dx \\ & = \int_{-3}^{3} \left(2(9 - x^2) + 2(9 - x^2)\right)~dx \\ & = \left[36x - \dfrac{4}{3}x^3\right]_{-3}^{3} \\ & = 144~\text{satuan volume} \end{aligned}
Jadi, volume dari perpotongan dua silinder tersebut adalah 144 satuan volume.
Catatan \bigstar: Angka 2 pada integran didapat karena sifat kesimetrian.

[collapse]

Soal Nomor 4
Hitunglah integral berikut dengan mengubahnya dalam koordinat tabung terlebih dahulu.
\displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx

Penyelesaian

Ingat bahwa dalam sistem koordinat tabung, dV = dz~r~dr~d\theta (posisinya menyesuaikan integralnya)
Kita akan mengubah batas integralnya terlebih dahulu.
Integral ketiga memiliki batas yang tidak perlu diubah (untuk variabel z)
Integral kedua memiliki batas 0 < y < \sqrt{9 - x^2} \Leftrightarrow 0 < x^2 + y^2 < 9
Pertidaksamaan itu merupakan pertidaksamaan lingkaran dengan radius 3, sehingga diperoleh
0 \leq \theta \leq 2\pi
-3 \leq r \leq 3
Jadi,
\begin{aligned} \displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx  & = \int_{-3}^{3} \int_{0}^{2\pi} \int_{0}^{2} r^2~dz~d\theta~dr \\ & = \int_{-3}^{3} \int_{0}^{2\pi} 2r^2~d\theta~dr \\ & = \int_{-3}^{3} 4\pi r^2~dr \\ & = 72\pi \end{aligned}
Jadi, diperoleh \boxed{\displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx = 72\pi}

[collapse]

Soal Nomor 5
Perlihatkan dengan integral ganda dua bahwa volume bola berjari-jari r adalah \dfrac{4}{3}\pi r^3

Penyelesaian

Gunakan integral ganda dua (double integrals) dalam sistem koordinat polar. Persamaan umum bola yang berpusat di titik asal dan berjari-jari r adalah x^2 + y^2 + z^2 = r^2. Jika z dijadikan subjek persamaan, diperoleh z = \pm \sqrt{r^2 - x^2 - y^2}. Dalam koordinat polar, ditulis z = \pm \sqrt{r^2 - R^2}. Batas integral yang ditentukan oleh variabel R dan \theta, yaitu
0 \leq R \leq r
0 \leq \theta 2\phi
Karena bola bersifat simetris dengan bagian separuhnya, maka kita dapat menentukan volume bola dengan menghitung volume setengah bola dikali 2, yaitu
\begin{aligned} V & = \displaystyle 2 \int_D \int \sqrt{r^2 - R^2}~dA \\ & = 2 \int_{0}^{2\pi} \int_{0}^{r} \sqrt{r^2 - R^2}~R~dR~d\theta \\ & = 2 \int_{0}^{2\pi} \left[-\dfrac{1}{3}\left(r^2 - R^2\right)^{\frac{3}{2}}\right]_{0}^{r}~d\theta \\ & = \dfrac{2}{3} \int_{0}^{2\pi} r^3~d\theta \\ & = \dfrac{2}{3} \left[r^3\theta\right]_{0}^{2\pi} \\ & = \dfrac{4}{3}\pi r^3 \end{aligned}
(Terbukti)

[collapse]

Selanjutnya, soal berikut merupakan soal UAS tahun-tahun sebelumnya yang diharapkan dapat melengkapi ilmu kita bersama.

Soal Nomor 6 
Selidiki apakah fungsi berikut kontinu pada daerah definisinya.
f(x, y) = \begin{cases} \dfrac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}

Soal Nomor 7
Tentukan turunan parsial pertama dari f(x, y) = \tan^{-1} (x^2 + y^2)

Penyelesaian

Ingat!!
\boxed{\dfrac{d}{dx} (\tan^{-1} u) = \dfrac{u'}{1 + u^2}}
(u adalah fungsi terhadap variabel x)
Akan dicari turunan parsial pertama dari f(x, y) terhadap variabel x dan y.
(Turunan parsial pertama terhadap x)
Anggap x sebagai variabel dan y sebagai suatu konstanta.
\dfrac{\partial}{\partial x}(\tan^{-1} (x^2 + y^2) = \boxed{\dfrac{2x}{1 + (x^2 + y^2)^2}}
(Turunan parsial pertama terhadap y)
Anggap y sebagai variabel dan x sebagai suatu konstanta.
\dfrac{\partial}{\partial y}(\tan^{-1} (x^2 + y^2) = \boxed{\dfrac{2y}{1 + (x^2 + y^2)^2}}

[collapse]
Ayo Beri Rating Postingan Ini

Soal dan Pembahasan – Ujian Akhir Semester (UAS) Persamaan Diferensial Biasa

Berikut ini adalah 4 soal UAS Persamaan Diferensial Biasa (TA 2017/2018) yang diujikan pada tanggal 10 Januari 2018 oleh Drs. Dian Ahmad B.S, M.Si . Materi yang diujikan mengenai persamaan diferensial linear homogen dan non-homogen dengan koefisien konstan dan kebebasan linear penyelesaian umumnya.

Soal Nomor 1
Tunjukkan bahwa e^{2x} dan e^{3x} merupakan penyelesaian bebas linear dari PD
\dfrac{d^2y}{dx^2} - 5\dfrac{dy}{dx} + 6y = 0
Selanjutnya, cari solusi yang memenuhi y(0) = 2 dan y'(0) = 3

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 2
Diketahui y = x merupakan penyelesaian PD
(x^2 + 1)\dfrac{d^2y}{dx^2} - 2x\dfrac{dy}{dx} + 2y = 0
Cari solusi bebas linear dengan reduksi orde serta tulis penyelesaian umumnya.

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + 2y = 4x^2

Penyelesaian


Solusi umum PD homogen yang terkait adalah y_c = C_1e^{2x} + C_2e^{x}
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{x^2, x, 1\}. Misalkan
y_p = Ax^2 + Bx + C adalah solusi khusus PD, dan diperoleh
y_p' =2Ax + B dan y_p'' = 2A
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + 2y = 4x^2
2A - 3(2Ax + B) + 2(Ax^2 + Bx + C) = 4x^2
2Ax^2 + (-6A + 2B)x + (2A - 3B + 2C) = 4x^2
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} 2A = 4 & \\ -6A+ 2B = 0 & \\ 2A - 3B + 2C = 0 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = 2 & \\ B = 6 & \\ C = 7 \end{cases}
Jadi, y_p = 2x^2 + 6x + 7
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = C_1e^{2x} + C_2e^{x} + 2x^2 + 6x + 7 }

[collapse]

Soal Nomor 4
Carilah solusi umum dari (x^2 + 1)\dfrac{d^2y}{dx^2} - 2x\dfrac{dy}{dx} + 2y = 6(x^2 + 1)^2 jika diberikan solusi umum PD homogen terkait y_c(x) = C_1(x) + C_2(x^2 - 1)

Penyelesaian


Diberikan y_c(x) = C_1(x) + C_2(x^2 - 1). Misalkan
y_p(x) = v_1(x).x + v_2(x).(x^2 - 1)
y_p'(x) = v_1(x) + v_1'(x).x + v_2'(x)(x^2 - 1) + v_2(x)(2x)
Misal v_1'(x).x + v_2'(x)(x^2 - 1) = 0
sehingga
y_p'(x) = v_1(x) + v_2(x)(2x)
Turunannya adalah
y_p''(x) = v_1'(x) + v_2'(x)(2x) + 2v_2(x)
Substitusikan y_p(x) beserta turunannya ke PD, diperoleh
\begin{multlined} (x^2 + 1)(v_1'(x) + v_2'(x).2x + 2v_2(x)) 2x(v_1(x) \\ + v_2(x).2x) + 2(v_1(x).x + v_2(x).(x^2 - 1)) = 6(x^2 + 1)^2 \end{multlined}
Sederhanakan bentuk di atas sehingga menjadi
v_1'(x) + 2xv_2'(x) = 6(x^2 + 1)
Dari sini, kita peroleh SPL
\begin{cases} v_1'(x).x + v_2'(x)(x^2 - 1) = 0 \\ v_1'(x) + 2xv_2'(x) = 6(x^2 + 1) \end{cases}
Cari nilai v_1'(x) dan v_2'(x) dengan menggunakan Aturan Cramer.
v_1'(x) = \dfrac{\begin{vmatrix} 0 & x^2-1 \\ 6(x^2+1) & 2x \end{vmatrix}}{\begin{vmatrix} x & x^2-1 \\ 1 & 2x \end{vmatrix}} = \dfrac{-6(x^4-1)}{x^2 + 1} = -6(x^2 - 1)
v_2'(x) = \dfrac{\begin{vmatrix} x & 0 \\ 1 & 6(x^2+1) \end{vmatrix}}{\begin{vmatrix} x & x^2-1 \\ 1 & 2x \end{vmatrix}} = \dfrac{6x(x^2+1)}{x^2+1} = 6x
Dengan integral, diperoleh
v_1(x) = -2x^3 + 6x +D_1
v_2(x) = 3x^2 + D_2
Jadi, kita peroleh
y_p(x) = (-2x^3 + 6x +D_1) x + (3x^2 + D_2)(x^2 - 1)
y_p(x)= x^4 + (3 + D_2)x^2 + D_1x - D_2
Penyelesaian umum dari PD tersebut adalah
y(x) = y_c(x) + y_p(x)
y(x) = C_1(x) + C_2(x^2 - 1) + x^4 + (3 + D_2)x^2 + D_1x - D_2
\boxed{y(x) = Cx + (3 + D)x^2 + x^4 + E}
(Perhatikan bahwa dalam hal ini, kita mentransformasi/mengubah bentuk konstanta agar lebih sederhana yaitu dengan mengganti hurufnya saja)

[collapse]

 

 

Ayo Beri Rating Postingan Ini