Soal dan Pembahasan – Ujian Akhir Semester (UAS) Kalkulus Integral

Berikut ini adalah 5 soal UAS Kalkulus Integral (TA 2017/2018) yang diujikan pada tanggal 15 Januari 2018 oleh Drs. Ade Mirza, M.Pd. Materi yang diujikan mengenai perhitungan volume benda dengan integral, fungsi transenden dan turunannya, serta teknik integrasi tingkat lanjut.

Soal Nomor 1
Susunlah integral yang sesuai untuk menentukan volume benda yang terbentuk dengan menunjukkan sketsa jalur potongan dan hampirannya dari daerah R yang dibatasi oleh y = x^{-3}, x = 1, x = 3, dan y = 0 apabila diputar mengelilingi:
a) Sumbu Y
b) Garis y =-1

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 2
Hitunglah volume daerah yang terbentuk dan perlihatkan cara menentukannya pada daerah R yang dibatasi oleh kurva y = x^2, y = 2, dan x = 0 dan diputar mengelilingi y = 2 

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Buktikan bahwa \sec(\tan^{-1} x) = \sqrt{1 + x^2}
(Gunakan hubungan \sec^2\beta = 1 + \tan^2 \beta)

Penyelesaian

Berangkat dari identitas trigonometri berikut.
\sec^2 \beta = 1 + \tan^2 \beta
Substitusi \beta = \tan^{-1} x, diperoleh
\sec^2 (\tan^{-1} x) = 1 + \tan^2 (\tan^{-1} x)
Gunakan fakta bahwa \tan(\tan^{-1} x) = x untuk mendapatkan
\sec^2 (\tan^{-1} x) = 1 + x^2
\sec(\tan^{-1} x) = \sqrt{1+x^2}
(Terbukti)

[collapse]



Soal Nomor 4
Tentukan \dfrac{dy}{dx} dari y =7 \cos^{-1}\sqrt{2x}

Penyelesaian

Ingat!!
\boxed{\dfrac{d}{dx} (\cos^{-1} u) = -\dfrac{u'}{\sqrt{1-u^2}}}
(u adalah fungsi dalam x)
Dalam kasus ini,
u =\sqrt{2x} \Rightarrow u' = \dfrac{1}{\sqrt{2x}}
Jadi, untuk y = 7 \cos^{-1}\sqrt{2x}
\dfrac{dy}{dx} = \dfrac{-7}{\sqrt{2x}\sqrt{1-2x}} = \boxed{-\dfrac{7}{\sqrt{2x -4x^2}}}

[collapse]

Soal Nomor 5
Selesaikan integral berikut.
a) \displaystyle \int \dfrac{dx}{x\sqrt{x^2+9}}
b) \displaystyle \int \sqrt{x} \ln x~dx
c) \displaystyle \int \dfrac{2x^2+x-4}{x^3-x^2-2x} ~dx

Penyelesaian

(Jawaban a) Substitusi
u = \sqrt{x^2+9} \Leftrightarrow x^2 = u^2-9
sehingga diperoleh
du = \dfrac{x}{\sqrt{x^2+9}}~dx atau ditulis
dx = \dfrac{\sqrt{x^2+9}} {x}
Jadi, integralnya dapat ditulis menjadi
\begin{aligned} \displaystyle \int \dfrac{1}{x\sqrt{x^2+9}} \times \dfrac{\sqrt{x^2+9}} {x} ~du & = \int \dfrac{1}{u^2-9}~du \\ & = \int \dfrac{1}{(u+3)(u-3)} ~du \end{aligned}
Selanjutnya, gunakan teknik dekomposisi pecahan parsial. Tinjau integrannya.
\begin{aligned} \dfrac{1}{(u+3)(u-3)} & = \dfrac{A}{u+3} + \dfrac{B} {u-3} \\ & = \dfrac{(A+B)u + (-3A+3B)}{(u+3)(u-3)} \end{aligned}
Diperoleh SPLDV
\begin{cases} A+B=0 \\ -3A+3B=1 \end{cases}
Selesaikan sehingga diperoleh A = - \dfrac{1}{6} dan B=\dfrac{1}{6}
Kembalikan pada integralnya.
\begin{aligned} \displaystyle \int \dfrac{1}{(u+3)(u-3)} ~du & = \int \left(-\dfrac{1}{6(u+3)} + \dfrac{1}{6(u-3)}\right)~du \\ & = \dfrac{1}{6}(\ln (u-3) - \ln (u+3)) + C \\ & = \dfrac{1}{6} \times \ln \left(\dfrac{u-3}{u+3}\right) + C\end{aligned}
Substitusikan kembali u = \sqrt{x^2+9}, sehingga diperoleh
\boxed{\dfrac{\ln \left(\dfrac{\sqrt{x^2+9} - 3}{\sqrt{x^2+9} + 3}\right)}{6} + C}

(Jawaban b)
Gunakan teknik integrasi parsial
\boxed{\int uv' = uv - \int u'v}
Misal u = \ln x dan v' = \sqrt{x}, berarti u' = \dfrac{1}{x} dan v = \dfrac{2x^{\frac{3}{2}}}{3}
Jadi, diperoleh
\begin{aligned} \dfrac{2x^{\frac{3}{2}} \ln x}{3} - \displaystyle \int \dfrac{1}{x} \times \dfrac{2}{3}x^{\frac{3}{2}} ~dx & = \dfrac{2x^{\frac{3}{2}} \ln x}{3} - \dfrac{2}{3} \displaystyle \int \sqrt{x}~dx \\ & = \dfrac{2x^{\frac{3}{2}} \ln x}{3} - \dfrac{4}{9}x^{\frac{3}{2}} + C \\ & = \boxed{\dfrac{2x^{\frac{3}{2}} (3 \ln x - 2)} {9} + C} \end{aligned}}

(Jawaban c) Gunakan metode dekomposisi pecahan parsial karena penyebutnya dapat difaktorkan. Tinjau integrannya.
\begin{aligned} \dfrac{2x^2+x-4}{x^3-x^2-2x} & = \dfrac{2x^2+x-4}{x(x-2)(x+1)} \\& = \dfrac{A}{x} + \dfrac{B}{x-2} + \dfrac{C}{x+1} \\ & = \dfrac{A(x-2)(x+1) +Bx(x+1) + C(x)(x-2)}{x(x-2)(x+1)} \\ & = \dfrac{(A+B+C)x^2 + (-A+B-2C)x - 2A}{x(x-2)(x+1)} \end{aligned}
Bandingkan pembilangnya untuk memperoleh SPLTV berikut.
\begin{cases} A+B+C=2 \\ -A+B-2C = 1 \\-2A = -4 \end{cases}
Selesaikan sehingga diperoleh A = 2, B = 1, dan C = -1
Jadi, dapat ditulis
\begin{aligned} \displaystyle \int \dfrac{2x^2+x-4}{x^3-x^2-2x} ~dx & = \int \left(\dfrac{2}{x} + \dfrac{1}{x-2} -\dfrac{1}{x+1}\right) ~dx \\ & = 2 \ln x + \ln (x - 2) -\ln (x +1) \\ &= \boxed{\ln \left(\dfrac{x^3-2x^2} {x+1}\right)} \end{aligned}

[collapse]

Ayo Beri Rating Postingan Ini

Soal dan Pembahasan – Ujian Akhir Semester (UAS) Kalkulus Lanjut

Berikut ini adalah 5 soal UAS Kalkulus Lanjut (TA 2017/2018) yang diujikan pada tanggal 11 Januari 2018 oleh Drs. Ade Mirza, M.Pd.

Soal Nomor 1
Buktikan bahwa \displaystyle \lim_{(x, y) \to (1, 1)} (2x^2 + y^2) = 3

Penyelesaian

Fungsi f(x, y) = z = (2x^2 + y^2) terdefinisi pada \mathbb{R}^2, dengan (1, 1) sebagai titik limitnya. Kita akan tunjukkan bahwa:
\boxed{\begin{aligned}\forall \epsilon > 0, & \exists \delta > 0 \ni 0 < ||(x, y) - (1, 1)|| \\ & < \delta \Rightarrow |f(x, y) - 3| < \epsilon \end{aligned} }
atau
\boxed{\begin{aligned} \forall \epsilon > 0, & \exists \delta > 0 \ni 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta \\ &  \Rightarrow |2x^2 + y^2 - 3| < \epsilon \end{aligned}}
Analisis:
\begin{aligned} |2x^2 + y^2 - 3| & = |2x^2 - 2 + y^2 - 1| \\ & = |2(x+1)(x-1) + (y+1)(y-1)| \\ & \leq 2|x+1||x-1| + |y+1||y-1| \end{aligned}
Untuk ini, kita harus membatasi faktor |x + 1| dan |y + 1| oleh suatu konstanta real.
Misalkan 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1 \bigstar, maka berlaku
0 < |x - 1| <  \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1
0 < |y - 1| < \sqrt{(x-1)^2 + (y -1)^2} < \delta \leq 1
Akibatnya,
|x + 1| = |x - 1 + 2| \leq |x - 1| + 2 \leq 1 + 2 = 3
|y + 1| = |y - 1 + 2| \leq |y - 1| + 2 \leq 1 + 2 = 3
sehingga dari pemisalan tersebut, diperoleh
\begin{aligned} & 2|x+1||x-1| + |y+1||y-1| \leq 6|x - 1| + 3|y - 1| \\ & \leq 6\sqrt{(x-1)^2 + (y -1)^2} + 3\sqrt{(x-1)^2 + (y -1)^2} \\ & = 9\sqrt{(x-1)^2 + (y -1)^2} \\ & < 9\delta \end{aligned}
Dengan demikian, (langkah bukti):
Ambil sembarang \epsilon > 0, pilih \delta = \min\left\{1, \dfrac{1}{6}\epsilon\right\}, akibatnya jika 0 < \sqrt{(x-1)^2 + (y -1)^2} < \delta, maka berlaku
|2x^2 + y^2 - 3| < \epsilon
Jadi, terbukti bahwa \displaystyle \lim_{(x, y) \to (1, 1)} (2x^2 + y^2) = 3
Catatan \bigstar: Mengapa harus 1? Untuk mempermudah pembuktian/perhitungan, ambil bilangan bulat positif terkecil, yaitu 1 sebagai batas konstanta real yang dimaksud.

[collapse]

Soal Nomor 2
Gunakan integral ganda dua untuk menentukan luas daerah yang dibatasi oleh y = x^2 - 2 dan y = x

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Dengan menggunakan integral ganda dua, hitung isi benda yang terletak dalam silinder x^2 + z^2 = 9 dan x^2 + y^2 = 9

Penyelesaian

Klik sini untuk mengetahui representasi geometrik dan penjelasan yang lebih kompleks mengenai Steinmetz Solid (benda ruang yang diperoleh dari pengirisan/perpotongan dua atau lebih silinder)

Batas integrasi diberikan oleh
-3 \leq x \leq 3
-\sqrt{9 - x^2} \leq z \leq \sqrt{9 - x^2}
Jadi, volume bisilinder yang terbentuk ditentukan oleh
\begin{aligned} V & = \displaystyle \int_{-3}^{3} \int_{-\sqrt{9 - x^2}}^{\sqrt{9 - x^2}} 2\sqrt{9 - x^2}~dy~dx \bigstar \\ & = \int_{-3}^{3} \left[2\sqrt{9 - x^2}y\right]_{-\sqrt{9 - x^2}}^{\sqrt{9 - x^2}}~dx \\ & = \int_{-3}^{3} \left(2(9 - x^2) + 2(9 - x^2)\right)~dx \\ & = \left[36x - \dfrac{4}{3}x^3\right]_{-3}^{3} \\ & = 144~\text{satuan volume} \end{aligned}
Jadi, volume dari perpotongan dua silinder tersebut adalah 144 satuan volume.
Catatan \bigstar: Angka 2 pada integran didapat karena sifat kesimetrian.

[collapse]

Soal Nomor 4
Hitunglah integral berikut dengan mengubahnya dalam koordinat tabung terlebih dahulu.
\displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx

Penyelesaian

Ingat bahwa dalam sistem koordinat tabung, dV = dz~r~dr~d\theta (posisinya menyesuaikan integralnya)
Kita akan mengubah batas integralnya terlebih dahulu.
Integral ketiga memiliki batas yang tidak perlu diubah (untuk variabel z)
Integral kedua memiliki batas 0 < y < \sqrt{9 - x^2} \Leftrightarrow 0 < x^2 + y^2 < 9
Pertidaksamaan itu merupakan pertidaksamaan lingkaran dengan radius 3, sehingga diperoleh
0 \leq \theta \leq 2\pi
-3 \leq r \leq 3
Jadi,
\begin{aligned} \displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx  & = \int_{-3}^{3} \int_{0}^{2\pi} \int_{0}^{2} r^2~dz~d\theta~dr \\ & = \int_{-3}^{3} \int_{0}^{2\pi} 2r^2~d\theta~dr \\ & = \int_{-3}^{3} 4\pi r^2~dr \\ & = 72\pi \end{aligned}
Jadi, diperoleh \boxed{\displaystyle \int_{0}^{3} \int_{0}^{\sqrt{9 - x^2}} \int_{0}^{2} \sqrt{x^2 + y^2}~dz~dy~dx = 72\pi}

[collapse]

Soal Nomor 5
Perlihatkan dengan integral ganda dua bahwa volume bola berjari-jari r adalah \dfrac{4}{3}\pi r^3

Penyelesaian

Gunakan integral ganda dua (double integrals) dalam sistem koordinat polar. Persamaan umum bola yang berpusat di titik asal dan berjari-jari r adalah x^2 + y^2 + z^2 = r^2. Jika z dijadikan subjek persamaan, diperoleh z = \pm \sqrt{r^2 - x^2 - y^2}. Dalam koordinat polar, ditulis z = \pm \sqrt{r^2 - R^2}. Batas integral yang ditentukan oleh variabel R dan \theta, yaitu
0 \leq R \leq r
0 \leq \theta 2\phi
Karena bola bersifat simetris dengan bagian separuhnya, maka kita dapat menentukan volume bola dengan menghitung volume setengah bola dikali 2, yaitu
\begin{aligned} V & = \displaystyle 2 \int_D \int \sqrt{r^2 - R^2}~dA \\ & = 2 \int_{0}^{2\pi} \int_{0}^{r} \sqrt{r^2 - R^2}~R~dR~d\theta \\ & = 2 \int_{0}^{2\pi} \left[-\dfrac{1}{3}\left(r^2 - R^2\right)^{\frac{3}{2}}\right]_{0}^{r}~d\theta \\ & = \dfrac{2}{3} \int_{0}^{2\pi} r^3~d\theta \\ & = \dfrac{2}{3} \left[r^3\theta\right]_{0}^{2\pi} \\ & = \dfrac{4}{3}\pi r^3 \end{aligned}
(Terbukti)

[collapse]

Selanjutnya, soal berikut merupakan soal UAS tahun-tahun sebelumnya yang diharapkan dapat melengkapi ilmu kita bersama.

Soal Nomor 6 
Selidiki apakah fungsi berikut kontinu pada daerah definisinya.
f(x, y) = \begin{cases} \dfrac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}

Soal Nomor 7
Tentukan turunan parsial pertama dari f(x, y) = \tan^{-1} (x^2 + y^2)

Penyelesaian

Ingat!!
\boxed{\dfrac{d}{dx} (\tan^{-1} u) = \dfrac{u'}{1 + u^2}}
(u adalah fungsi terhadap variabel x)
Akan dicari turunan parsial pertama dari f(x, y) terhadap variabel x dan y.
(Turunan parsial pertama terhadap x)
Anggap x sebagai variabel dan y sebagai suatu konstanta.
\dfrac{\partial}{\partial x}(\tan^{-1} (x^2 + y^2) = \boxed{\dfrac{2x}{1 + (x^2 + y^2)^2}}
(Turunan parsial pertama terhadap y)
Anggap y sebagai variabel dan x sebagai suatu konstanta.
\dfrac{\partial}{\partial y}(\tan^{-1} (x^2 + y^2) = \boxed{\dfrac{2y}{1 + (x^2 + y^2)^2}}

[collapse]
Ayo Beri Rating Postingan Ini

Soal dan Pembahasan – Ujian Akhir Semester (UAS) Persamaan Diferensial Biasa

Berikut ini adalah 4 soal UAS Persamaan Diferensial Biasa (TA 2017/2018) yang diujikan pada tanggal 10 Januari 2018 oleh Drs. Dian Ahmad B.S, M.Si . Materi yang diujikan mengenai persamaan diferensial linear homogen dan non-homogen dengan koefisien konstan dan kebebasan linear penyelesaian umumnya.

Soal Nomor 1
Tunjukkan bahwa e^{2x} dan e^{3x} merupakan penyelesaian bebas linear dari PD
\dfrac{d^2y}{dx^2} - 5\dfrac{dy}{dx} + 6y = 0
Selanjutnya, cari solusi yang memenuhi y(0) = 2 dan y'(0) = 3

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 2
Diketahui y = x merupakan penyelesaian PD
(x^2 + 1)\dfrac{d^2y}{dx^2} - 2x\dfrac{dy}{dx} + 2y = 0
Cari solusi bebas linear dengan reduksi orde serta tulis penyelesaian umumnya.

Penyelesaian Belum Tersedia
[collapse]

Soal Nomor 3
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + 2y = 4x^2

Penyelesaian


Solusi umum PD homogen yang terkait adalah y_c = C_1e^{2x} + C_2e^{x}
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{x^2, x, 1\}. Misalkan
y_p = Ax^2 + Bx + C adalah solusi khusus PD, dan diperoleh
y_p' =2Ax + B dan y_p'' = 2A
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + 2y = 4x^2
2A - 3(2Ax + B) + 2(Ax^2 + Bx + C) = 4x^2
2Ax^2 + (-6A + 2B)x + (2A - 3B + 2C) = 4x^2
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} 2A = 4 & \\ -6A+ 2B = 0 & \\ 2A - 3B + 2C = 0 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = 2 & \\ B = 6 & \\ C = 7 \end{cases}
Jadi, y_p = 2x^2 + 6x + 7
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = C_1e^{2x} + C_2e^{x} + 2x^2 + 6x + 7 }

[collapse]

Soal Nomor 4
Carilah solusi umum dari (x^2 + 1)\dfrac{d^2y}{dx^2} - 2x\dfrac{dy}{dx} + 2y = 6(x^2 + 1)^2 jika diberikan solusi umum PD homogen terkait y_c(x) = C_1(x) + C_2(x^2 - 1)

Penyelesaian


Diberikan y_c(x) = C_1(x) + C_2(x^2 - 1). Misalkan
y_p(x) = v_1(x).x + v_2(x).(x^2 - 1)
y_p'(x) = v_1(x) + v_1'(x).x + v_2'(x)(x^2 - 1) + v_2(x)(2x)
Misal v_1'(x).x + v_2'(x)(x^2 - 1) = 0
sehingga
y_p'(x) = v_1(x) + v_2(x)(2x)
Turunannya adalah
y_p''(x) = v_1'(x) + v_2'(x)(2x) + 2v_2(x)
Substitusikan y_p(x) beserta turunannya ke PD, diperoleh
\begin{multlined} (x^2 + 1)(v_1'(x) + v_2'(x).2x + 2v_2(x)) 2x(v_1(x) \\ + v_2(x).2x) + 2(v_1(x).x + v_2(x).(x^2 - 1)) = 6(x^2 + 1)^2 \end{multlined}
Sederhanakan bentuk di atas sehingga menjadi
v_1'(x) + 2xv_2'(x) = 6(x^2 + 1)
Dari sini, kita peroleh SPL
\begin{cases} v_1'(x).x + v_2'(x)(x^2 - 1) = 0 \\ v_1'(x) + 2xv_2'(x) = 6(x^2 + 1) \end{cases}
Cari nilai v_1'(x) dan v_2'(x) dengan menggunakan Aturan Cramer.
v_1'(x) = \dfrac{\begin{vmatrix} 0 & x^2-1 \\ 6(x^2+1) & 2x \end{vmatrix}}{\begin{vmatrix} x & x^2-1 \\ 1 & 2x \end{vmatrix}} = \dfrac{-6(x^4-1)}{x^2 + 1} = -6(x^2 - 1)
v_2'(x) = \dfrac{\begin{vmatrix} x & 0 \\ 1 & 6(x^2+1) \end{vmatrix}}{\begin{vmatrix} x & x^2-1 \\ 1 & 2x \end{vmatrix}} = \dfrac{6x(x^2+1)}{x^2+1} = 6x
Dengan integral, diperoleh
v_1(x) = -2x^3 + 6x +D_1
v_2(x) = 3x^2 + D_2
Jadi, kita peroleh
y_p(x) = (-2x^3 + 6x +D_1) x + (3x^2 + D_2)(x^2 - 1)
y_p(x)= x^4 + (3 + D_2)x^2 + D_1x - D_2
Penyelesaian umum dari PD tersebut adalah
y(x) = y_c(x) + y_p(x)
y(x) = C_1(x) + C_2(x^2 - 1) + x^4 + (3 + D_2)x^2 + D_1x - D_2
\boxed{y(x) = Cx + (3 + D)x^2 + x^4 + E}
(Perhatikan bahwa dalam hal ini, kita mentransformasi/mengubah bentuk konstanta agar lebih sederhana yaitu dengan mengganti hurufnya saja)

[collapse]

 

 

Ayo Beri Rating Postingan Ini

Soal dan Pembahasan: Persamaan Diferensial Linear Orde Dua (Non-Homogen) dengan Koefisien Konstan


Berikut ini disajikan beberapa soal beserta penyelesaiannya mengenai persamaan diferensial linear orde dua (non-homogen) dengan koefisien konstan. Metode yang digunakan melibatkan penyelesaian PD homogennya, sehingga Anda diharuskan sudah menguasai teknik penyelesaiannya. Klik link berikut untuk mempelajari soal-soal yang terkait dengannya.
Soal dan Pembahasan – PD Linear Orde Dua (Homogen) dengan Koefisien Konstan

Gunakan bantuan tabel UC di atas untuk mengerjakan soal-soal berikut ini.

Soal Nomor 1
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 2 \dfrac{dy}{dx} - 3y = 5

Penyelesaian

PD di atas bukan PD homogen sebab ruas kanannya mengandung konstanta tak nol. Gunakan cara yang sama seperti mencari penyelesaian umum PD homogen. Persamaan karakteristiknya adalah m^2 - 2m - 3 = (m - 3)(m + 1) = 0. Dengan demikian, akar karakteristiknya adalah m = 3 \lor m = -1. Berarti, penyelesaian umum PD homogen terkait adalah y_c = C_1e^{3x} + C_2e^{-x}. Dengan memperhatikan koefisien y pada PD, kita dapatkan bahwa perlu adanya konstanta baru yang bila dikalikan dengan -3, hasilnya adalah 5.  Konstanta itu adalah -\dfrac{5}{3}. Jadi, solusi umum PD tersebut adalah
\boxed{y = y_c - \dfrac{5}{3} = C_1e^{3x} + C_2e^{-x} - \dfrac{5}{3}}.

[collapse]

Soal Nomor 2
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 2 \dfrac{dy}{dx} - 3y = 2e^{4x}

Penyelesaian

Langkah pertama adalah menentukan solusi komplementer (umum) untuk PD homogen terkait, yaitu
\dfrac{d^2y}{dx^2} - 2 \dfrac{dy}{dx} - 3y = 0
Persamaan karakteristiknya adalah m^2 - 2m - 3 = 0, dengan akar karakteristik m = 3 dan m = -1. Jadi, solusi umumnya adalah y_c = C_1e^{3x} + C_2e^{-x}
Langkah selanjutnya adalah menentukan solusi partikulir (solusi khusus) PD non-homogen tersebut.
Misalkan y_p = Ae^{4x} merupakan solusi khususnya, sehingga y' = 4Ae^{4x} dan y'' = 16Ae^{4x}. Substitusikan ke PD, diperoleh
16Ae^{4x} - 2(4Ae^{4x}) - 3Ae^{4x} = 2e^{4x}
\Leftrightarrow 5Ae^{4x} = 2e^{4x}
\Leftrightarrow A = \dfrac{2}{5}

Berarti, solusi khususnya adalah y_p = \dfrac{2}{5}e^{4x}
Solusi umum PD itu adalah
\boxed{y = y_c + y_p = C_1e^{3x} + C_2e^{-x} + \dfrac{2}{5}e^{4x}}

[collapse]

Soal Nomor 3
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 2 \dfrac{dy}{dx} - 3y = 2e^{3x}

Penyelesaian

Mirip dengan soal nomor 1 (bedanya hanya pada ekspresi di ruas kanannya). Solusi umum PD non-homogen terkait adalah y_c = C_1e^{3x} + C_2e^{-x}. Sekarang, kita akan menentukan solusi khusus PD homogennya dengan cara yang sama seperti sebelumnya.
Misalkan y_p = Ae^{3x} merupakan solusi khususnya, sehingga y' = 3Ae^{4x} dan y'' = 9Ae^{4x}. Substitusikan ke PD, diperoleh
9Ae^{4x} - 2(3Ae^{4x}) - 3Ae^{4x} = 2e^{4x}
0 = 2e^{4x}

Dalam hal ini, kita menemukan bahwa nilai A menjadi sembarang konstanta, sebab pada solusi umum y_c sudah terkandung suku dengan ekspresi e^{3x}.
Ulangi step dengan memisalkan y_p = Axe^{3x} sebagai solusi khususnya, sehingga y_p' = 3Axe^{3x} + Ae^{3x} dan y_p'' = 9Axe^{3x} + 6Ae^{3x}. Substitusikan ke PD hingga diperoleh
(9Axe^{3x} + 6Ae^{3x}) - 2(3Axe^{3x} + Ae^{3x}) - 3Axe^{3x} = 2e^{3x}
\Leftrightarrow 4Ae^{3x} = 2e^{3x}
\Leftrightarrow A = \dfrac{1}{2}

Jadi, y_p = \dfrac{1}{2}xe^{3x}
Dengan demikian, solusi umum PD homogen tersebut adalah
\boxed{y = y_c + y_p = C_1e^{3x} + C_2e^{-x} + \dfrac{1}{2}xe^{3x}}

[collapse]

Soal Nomor 4
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + 2y = 4x^2

Penyelesaian

Solusi umum PD homogen yang terkait adalah y_c = C_1e^{2x} + C_2e^{x}
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{x^2, x, 1\}. Misalkan
y_p = Ax^2 + Bx + C adalah solusi khusus PD, dan diperoleh
y_p' =2Ax + B dan y_p'' = 2A
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} + 2y = 4x^2
2A - 3(2Ax + B) + 2(Ax^2 + Bx + C) = 4x^2
2Ax^2 + (-6A + 2B)x + (2A - 3B + 2C) = 4x^2
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} 2A = 4 & \\ -6A+ 2B = 0 & \\ 2A - 3B + 2C = 0 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = 2 & \\ B = 6 & \\ C = 7 \end{cases}
Jadi, y_p = 2x^2 + 6x + 7
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = C_1e^{2x} + C_2e^{x} + 2x^2 + 6x + 7 }

[collapse]

Soal Nomor 5
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} - 8y = 4e^{2x} - 21e^{-3x}

Penyelesaian

Solusi umum PD homogen yang terkait adalah y_c = C_1e^{4x} + C_2e^{-2x}
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{e^{2x}, e^{-3x}\}. Misalkan
y_p = Ae^{2x}+ Be^{-3x} adalah solusi khusus PD, dan diperoleh
y_p' = 2Ae^{2x} - 3Be^{-3x} dan y_p'' = 4Ae^{2x} + 9Be^{-3x}
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} - 8y = 4e^{2x} - 21e^{-3x}
\begin{aligned} (4Ae^{2x} + 9Be^{-3x}) & - 2(2Ae^{2x} - 3Be^{-3x}) \\ & - 8(Ae^{2x}+ Be^{-3x}) = 4e^{2x} - 21e^{-3x} \end{aligned}
\Leftrightarrow (-8A)e^{2x} + 7Be^{-3x} = 4e^{2x} - 21e^{-3x}
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} -8A = 4 & \\ 7B = -21 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = -\dfrac{1}{2} & \\ B = -3 \end{cases}
Jadi, y_p = -\dfrac{1}{2}e^{2x} - 3e^{-3x}
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = C_1e^{4x} + C_2e^{-2x} -\dfrac{1}{2}e^{2x} - 3e^{-3x}}

[collapse]

Soal Nomor 6
Tentukan solusi umum dari \dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} - 3y = 2e^x - 10 \sin x

Penyelesaian

Solusi umum PD homogen yang terkait adalah y_c = C_1e^{3x} + C_2e^{-x}
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{e^x, \sin x, \cos x\}. Misalkan
y_p = Ae^x + B \sin x + C \cos x adalah solusi khusus PD, dan diperoleh
y_p' = Ae^x + B \cos x - C \sin x
y_p'' = Ae^x - B \sin x - C \cos x
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} - 2\dfrac{dy}{dx} - 3y = 2e^x - 10 \sin x
\begin{aligned} (Ae^x & - B \sin x - C \cos x)  - 2(Ae^x +  B \cos x \\ & - C \sin x)  - 3( Ae^x + B \sin x + C \cos x) \\ & = 2e^x - 10 \sin x \end{aligned}
\begin{aligned} -4Ae^x + & (-4B + 2C) \sin x + (-2B - 4C) \cos x \\ & = 2e^x - 10 \sin x \end{aligned}
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} -4A = 2 & \\ -4B + 2C = -10 & \\ -2B - 4C = 0 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = \dfrac{1}{2} & \\ B =2 & \\ C = -1 \end{cases}
Jadi, y_p = \dfrac{1}{2}e^x + 2\sin x - \cos x
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = C_1e^{3x} + C_2e^{-x} + \dfrac{1}{2}e^x + 2\sin x - \cos x}

[collapse]

Soal Nomor 7
Cari solusi umum dari \dfrac{d^2y}{dx^2} +2 \dfrac{dy}{dx} + 5y = 6 \sin 2x + 7 \cos 2x

Penyelesaian

Persamaan karakteristik dari PD homogen terkait adalah m^2 + 2m + 5 = 0. Akar karakteristiknya (gunakan rumus kuadrat) adalah m = -1 \pm 2i sehingga solusi umumnya adalah
y_c = e^{-x}(C_1 \sin 2x + C_2 \cos 2x)
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{\sin 2x, \cos 2x\}. Misalkan
y_p = A \sin 2x + B \cos 2x adalah solusi khusus PD, dan diperoleh
y_p' = 2A \cos 2x - 2B \sin 2x
y_p'' = -4A \sin 2x - 4B \cos 2x
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} +2 \dfrac{dy}{dx} + 5y = 6 \sin 2x + 7 \cos 2x
\begin{aligned} ( -4A \sin 2x & - 4B \cos 2x)  + 2(2A \cos 2x - \\ & 2B \sin 2x) + 5(A \sin 2x + B \cos 2x) \\ & = 6 \sin 2x + 7 \cos 2x \end{aligned}
\begin{aligned} (A - 4B)\sin 2x & + (4A + B)\cos 2x \\ & = 6 \sin 2x + 7 \cos 2x \end{aligned}
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} A-4B = 6 & \\ 4A+B= 7 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = 2 & \\ B = -1 \end{cases}
Jadi, y_p = 2 \sin 2x - \cos 2x
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = e^{-x}(C_1 \sin 2x + C_2 \cos 2x) + 2 \sin 2x - \cos 2x}

[collapse]

Soal Nomor 8
Cari solusi umum dari \dfrac{d^2y}{dx^2} +2 \dfrac{dy}{dx} + 2y = 10 \sin 4x

Penyelesaian

Persamaan karakteristik dari PD homogen terkait adalah m^2 + 2m + 2 = 0. Akar karakteristiknya (gunakan rumus kuadrat) adalah m = -1 \pm i sehingga solusi umumnya adalah
y_c = e^{-x}(C_1 \sin x + C_2 \cos x)
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{\sin 4x, \cos 4x\}. Misalkan
y_p = A \sin 4x + B \cos 4x adalah solusi khusus PD, dan diperoleh
y_p' = 4A \cos 4x - 4B \sin 4x
y_p'' = -16A \sin 4x - 16B \cos 4x
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} +2 \dfrac{dy}{dx} + 2y = 10 \sin 4x
\begin{aligned}(-16A \sin 4x - & 16B \cos 4x) + 2(4A \cos 4x \\ & - 4B \sin 4x)   + 2(A \sin 4x + B \cos 4x) \\ & = 10 \sin 4x \end{aligned}
\Leftrightarrow (-14A - 8B)\sin 4x + (8A - 14B)\cos 4x = 10 \sin 4x
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} -14A-8B = 10 & \\ 8A-14B= 0 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = -\dfrac{7}{13}& \\ B = -\dfrac{4}{13} \end{cases}
Jadi, y_p = -\dfrac{7}{13} \sin 4x -\dfrac{4}{13} \cos 4x
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = e^{-x}(C_1 \sin x + C_2 \cos x) -\dfrac{7}{13} \sin 4x -\dfrac{4}{13} \cos 4x}

[collapse]

Soal Nomor 9
Cari solusi umum dari \dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} - 4y = 16x - 12e^{2x}

Penyelesaian

Solusi umum PD homogen yang terkait adalah y_c = C_1e^{4x} + C_2e^{-x}
Diketahui himpunan UC dari ekspresi di ruas kanan PD adalah \{x, 1, e^{2x}\}. Misalkan
y_p = Ax + B + Ce^{2x} adalah solusi khusus PD, dan diperoleh
y_p' = A + 2Ce^{2x} dan y_p'' = 4Ce^{2x}
Substitusikan ke PD:
\dfrac{d^2y}{dx^2} - 3\dfrac{dy}{dx} - 4y = 16x - 12e^{2x}
\begin{aligned} (4Ce^{2x}) - 3(A + 2Ce^{2x}) & - 4(Ax + B + Ce^{2x}) \\ & = 16x - 12e^{2x} \end{aligned}
(-6C)e^{2x} + (-4A)x + (-3A - 4B) = 16x - 12e^{2x}
Dari persamaan di atas, diperoleh sistem persamaan linear
\begin{cases} -6C = -12 & \\ -4A = 16 & \\ -3A - 4B = 0 \end{cases}
Selesaikan sehingga diperoleh
\begin{cases} A = -4 & \\ B = 3 & \\ C = 2 \end{cases}
Jadi, y_p = -4x + 3 + 2e^{2x}
Solusi umumnya adalah y = y_c + y_p, yaitu
\boxed{y = C_1e^{4x} + C_2e^{-x} - 4x + 3 + 2e^{2x}}

[collapse]

Ayo Beri Rating Postingan Ini