Soal dan Pembahasan – Tes Kemampuan Akademik (TKA) Matematika SMA Paket 2

Tes Kemampuan Akademik (TKA), atau academic ability test adalah salah satu bentuk asesmen yang dikembangkan oleh Pusat Asesmen dan Pembelajaran (Pusmendik), Kementerian Pendidikan Dasar dan Menengah, untuk memotret capaian akademik siswa secara objektif, terukur, dan adil. TKA pertama kali mulai diselenggarakan pada tahun 2025. TKA diselenggarakan sebagai asesmen sukarela yang dapat diikuti oleh siswa dari berbagai jenjang pendidikan. Kehadiran TKA didasarkan pada kebutuhan akan instrumen evaluasi yang terstandar secara nasional sehingga hasilnya tidak hanya menjadi gambaran pencapaian individu, tetapi juga dapat dipakai sebagai tolok ukur dalam mengidentifikasi posisi capaian belajar siswa dibandingkan dengan standar kompetensi yang berlaku. Dengan demikian, TKA tidak dimaksudkan sebagai ujian yang menimbulkan beban, melainkan sebagai sarana diagnosis akademik yang bermanfaat bagi siswa, guru, maupun sekolah.

Lebih jauh, TKA dirancang untuk mengukur kompetensi mendasar yang mencakup pengetahuan dan keterampilan akademik inti, seperti literasi membaca, literasi matematika (numerasi), serta kemampuan berpikir kritis dan pemecahan masalah yang berkaitan dengan berbagai mata pelajaran. Melalui soal-soal yang disusun secara sistematis dan terstandar, asesmen ini tidak hanya menilai kemampuan menghafal, tetapi juga menekankan pada keterampilan berpikir tingkat tinggi (higher order thinking skills). Hasil TKA kemudian dapat digunakan untuk memberikan umpan balik yang konstruktif, baik bagi siswa dalam mengidentifikasi kekuatan dan kelemahannya, maupun bagi guru dalam merancang strategi pembelajaran yang lebih tepat sasaran.

Selain itu, TKA juga memiliki peran strategis dalam mendukung kebijakan pendidikan nasional. Data hasil tes ini dapat menjadi sumber informasi yang kredibel bagi sekolah, pemerintah daerah, maupun pemangku kebijakan di tingkat pusat dalam merumuskan program peningkatan mutu pendidikan. Dengan adanya pelaporan capaian akademik yang bersifat individual, sekolah dapat mengetahui kebutuhan belajar siswanya secara lebih rinci, sementara orang tua dapat memahami perkembangan anaknya secara lebih objektif. Dengan kata lain, TKA hadir bukan hanya untuk menilai, tetapi juga untuk mendorong peningkatan kualitas pembelajaran, penguatan kompetensi dasar siswa, serta penciptaan ekosistem pendidikan yang lebih berkeadilan.

Secara teknis, TKA untuk level SMA dilaksanakan secara daring dengan menggunakan aplikasi CBT, sama seperti penyelenggaraan OSN dan ANBK. Untuk mengikuti TKA, murid SMA akan menghadapi 3 mata pelajaran wajib, yaitu Bahasa Indonesia, Bahasa Inggris, dan Matematika, serta 2 dari 4 mata pelajaran pilihan yang mereka jalani sebelumnya. Sebagai contoh, jika seorang murid memilih mata pelajaran Sosiologi, Ekonomi, Matematika Tingkat Lanjut, dan Fisika saat pertama kali menginjak kelas XI, maka ia hanya boleh memilih 2 dari 4 mata pelajaran tersebut, misalnya Sosiologi dan Ekonomi, untuk diuji dalam TKA. Kebijakan ini mungkin bakal berubah sewaktu-waktu sehingga perlu ditelaah kembali.

Baca: Soal dan Pembahasan – Tes Kemampuan Akademik (TKA) Matematika Tingkat Lanjut SMA Paket 1

Dari segi format soal, soal TKA tidak hanya berbentuk pilihan ganda biasa, tetapi juga memuat soal berbentuk pilihan ganda kompleks (jawaban benar lebih dari satu). Siswa diminta mencentang pernyataan yang bernilai benar dari beberapa pernyataan yang diberikan atau bisa juga memutuskan apakah pernyataan-pernyataan yang diberikan bernilai benar atau salah pada tabel yang disediakan. Ini berarti, format soal TKA mengadopsi soal Asesmen Kompetensi Minimum (AKM) yang juga tidak hanya memuat soal pilihan ganda. Hal ini berbeda dengan soal Ujian Nasional (UN) yang dulunya diselenggarakan dalam bentuk soal pilihan ganda biasa saja.

Berdasarkan informasi yang beredar, TKA level SMA/MA/Sederajat dan SMK/MAK dilaksanakan selama dua hari. Pada hari pertama, siswa akan menghadapi tes mata pelajaran wajib, yaitu Bahasa Indonesia (45 menit), Matematika (50 menit), dan Bahasa Inggris (45 menit). Sementara itu, pada hari kedua, siswa akan menghadapi tes dua mata pelajaran pilihan, masing-masing diberi durasi pengerjaan selama 60 menit.

Untuk mempersiapkan TKA dengan lebih matang, berikut telah disediakan beberapa contoh soal dan pembahasan TKA mata pelajaran Matematika SMA (Paket 2) yang selaras dengan kerangka kisi-kisi yang dikeluarkan pemerintah. Semoga dapat dijadikan sumber belajar untuk meningkatkan pemahaman.

Baca: Soal dan Pembahasan – Tes Kemampuan Akademik (TKA) Matematika Tingkat Lanjut SMA Paket 2

Jika Anda ingin mencari soal latihan yang lebih banyak, Anda dapat mengakses ke folder soal mathcyber1997.com dengan mendaftar di bit.ly/Akses_SoalFolder soal tersebut berisi soal UTBK-SNBT, soal persiapan CPNS-PPPK, soal psikotes, soal TPA, soal ujian masuk perguruan tinggi (termasuk STAN), soal kompetensi matematika (termasuk OSN dan ON MIPA), dan masih banyak lagi.

Quote by Sun Tzu

Kemenangan sejati dimulai dari pikiran yang siap.

Soal Nomor 1

Perhatikan grafik di bawah ini.
Grafik sistem pertidaksamaan linear
Daerah penyelesaian dari sistem pertidaksamaan $3x+2y \leq 36$; $x + 2y \geq 20$; $x \geq 0$ dan $y \geq 0$ pada gambar di atas adalah $\cdots \cdot$

A. V                        C. III                    E. I
B. IV                      D. II

Pembahasan

Grafik dari pertidaksamaan $3x + 2y \leq 36$ memotong sumbu $X$ di $x = 12$ dan memotong sumbu $Y$ di $y = 18$. Karena bertanda $\leq$, maka arsiran daerah penyelesaiannya ke bawah, yaitu daerah II, III, dan V. 
Grafik dari pertidaksamaan $x + 2y \geq 20$ memotong sumbu $X$ di $x = 20$ dan memotong sumbu $Y$ di $y = 10$. Karena bertanda $\geq$, maka arsiran daerah penyelesaiannya ke atas, yaitu daerah I, II, dan V. 
$x, y$ juga bertanda nonnegatif. Ini berarti, daerah penyelesainnya hanya termuat di kuadran pertama. Dengan demikian, daerah penyelesaian sistem pertidaksamaan tersebut adalah daerah II.
(Jawaban D)

[collapse]

Soal Nomor 33

Jika solusi dari SPLDV
$\begin{cases} (a+3)x + y & = 0 \\ x + (a+3)y & = 0 \end{cases}$
tidak hanya $(x, y) = (0,0),$ maka nilai $a^2+6a+17 = \cdots \cdot$
A. $0$                      C. $4$                  E. $16$
B. $1$                      D. $9$            

Pembahasan

Diketahui
$\begin{cases} (a+3)x + y & = 0 && (\cdots 1) \\ x + (a+3)y & = 0 && (\cdots 2) \end{cases}$
Dua ruas pada Persamaan $(2)$ dikali dengan $(a+3)$ menghasilkan
$(a+3)x + (a+3)^2y = 0~~~~~(\cdots 3)$.
Kurangi $(1)$ dan $(3)$, lalu selesaikan untuk mencari nilai $a$.
$\begin{aligned} y-(a+3)^2y & = 0 \\ y(1-(a+3)^2) & = 0 \\ 1-(a+3)^2 & = 0 && (\text{Bagi}~y) \\ 1-(a^2+6a+9) & = 0 \\ a^2+6a+8 & = 0 \\ (a+4)(a+2) & = 0 \end{aligned}$
Diperoleh nilai $a=-4$ atau $a=-2$.
Substitusi $a=-4$ dan $a=-2$ pada bentuk $a^2+6a+17$.
$$\begin{aligned} a = -4 & \Rightarrow (-4)^2 + 6(-4) + 17 = 9 \\ a = -2 & \Rightarrow (-2)^2 + 6(-2) + 17 = 9 \end{aligned}$$Jadi, nilai dari $\boxed{a^2+6a+17 = 9}.$

(Jawaban D)

[collapse]

Soal Nomor 15

Jika grafik $f(x)=ax^2+(2a+6)x+2a-2$ menyinggung sumbu-$X$, maka koordinat titik balik maksimumnya adalah $\cdots \cdot$
A. $(-3,0)$                        D. $(3,0)$
B. $(-2,0)$                        E. $(5,0)$
C. $(2,0)$

Pembahasan

Karena $f(x)=ax^2+(2a+6)x+2a-2$ menyinggung sumbu $X$, diskriminannya harus bernilai $0.$
$\begin{aligned} D & = 0 \\ b^2-4ac & = 0 \\ (2a+6)^2-4a(2a-2) & = 0 \\ (4a^2+24a+36)-8a^2+8a & = 0 \\-4a^2+32a+36 & = 0 \\ a^2-8a-9 & = 0 \\ (a-9)(a+1) & = 0 \end{aligned}$
Diperoleh $a=9$ atau $a=-1.$
Karena titik baliknya maksimum, maka haruslah $a<0$ (parabola terbuka ke bawah) sehingga nilai $a$ yang diambil adalah $a=-1.$ Substitusikan pada $f(x)=ax^2+(2a+6)x+2a-2$ sehingga diperoleh $f(x)=-x^2+4x-4.$
Absis titik baliknya adalah
$x_p =-\dfrac{\text{Koef.}~x}{2 \cdot \text{Koef.}~x^2} =-\dfrac{4}{2(-1)} = 2.$
Karena grafik menyinggung sumbu $X,$ maka $y_p = 0.$
Jadi, koordinat titik balik maksimumnya adalah $\boxed{(x_p, y_p) = (2, 0)}$
(Jawaban C)

[collapse]

Soal Nomor 31

Nilai $(n)$ peserta diklat dipengaruhi oleh keaktifan selama kegiatan di dalam kelas, ditentukan oleh rumus $n(A)=\dfrac{3A+22}{4}$. Keaktifan peserta diklat bergantung pada banyaknya program kegiatan ($P$), ditentukan oleh rumus $A(P) = 4P+6$. Jika Denih adalah seorang peserta diklat yang mampu melaksanakan $80\%$ dari $25$ kegiatan yang ada dalam diklat tersebut, maka nilai yang diperoleh Denih adalah $\cdots \cdot$
A. $60$                      C. $70$                      E. $80$
B. $65$                      D. $75$

Pembahasan

Masalah di atas melibatkan dua fungsi yang saling terkait. Fungsi komposisi yang terbentuk oleh masalah di atas adalah $(n \circ A)(P) = n(A(P)),$ yang merepresentasikan nilai yang didapat peserta diklat. 
Perhatikan bahwa $80\%$ dari $25$ kegiatan yang diikuti berarti sebanyak
$80\% \times 25 = \dfrac{80}{\cancelto{4}{100}} \cdot \cancel{25} = 20$ kegiatan. 
Artinya, $P = 20$. 
Dengan demikian, kita peroleh
$\begin{aligned} n(A(P)) & = n(4P + 6) \\ & = \dfrac{3(4P+6)+22}{4} \\ & = \dfrac{12P + 40} {4} \\ & = 3P + 10 \\  n(A(20)) & = 3(20) + 10 = 70 \end{aligned}$
Jadi, nilai yang didapat Denih adalah $\boxed{70}.$
(Jawaban C)

[collapse]

Soal Nomor 9

Sebuah piza berbentuk lingkaran dengan diameter $20$ cm dipotong menjadi $10$ bagian berbentuk juring. Sudut pusat dari $10$ potongan piza tersebut membentuk barisan aritmetika. Jika besar sudut pusat potongan piza terkecil sama dengan $\dfrac{1}{5}$ dari besar sudut pusat potongan piza terbesar, maka berapakah luas potongan piza terbesar?
A. $51\dfrac13~\text{cm}^2.$
B. $51\dfrac23~\text{cm}^2.$
C. $52\dfrac13~\text{cm}^2.$
D. $52\dfrac23~\text{cm}^2.$
E. $53\dfrac13~\text{cm}^2.$

Pembahasan

Dari masalah di atas, diketahui
$\text{U}_1 = \dfrac{1}{5}\text{U}_{10} \Leftrightarrow 5\text{U}_1 = \text{U}{10}$
atau dapat ditulis
$5a = a + 9b \Leftrightarrow 20a = 45b.~~~~(1)$
Jumlah kesepuluh sudut pusat itu akan menjadi jumlah derajat dalam satu putaran (lingkaran), yaitu $360^{\circ}$ sehingga ditulis
$$\begin{aligned} \text{U}_1 + \text{U}_2 + \text{U}_3 + \cdots + \text{U}_{10} & = 360^{\circ} \\ a + (a + b) + (a + 2b) + \cdots + (a+9b) & = 360^{\circ} \\ 10a + (1+2+3+\cdots 9)b & = 360^{\circ} \\ 10a + 45b & = 360^{\circ}. && (\cdots 2) \end{aligned}$$Substitusikan persamaan $(1)$ ke persamaan $(2)$.
$\begin{aligned} 10a + 45b & = 360^{\circ} \\ 10a + 20a & = 360^{\circ} \\ 30a & = 360^{\circ} \\ \text{U}_1 & = a = 12^{\circ} \end{aligned}$
Besar sudut pusat potongan piza terbesar adalah
$\text{U}_{10} = 5\text{U}_1 = 5(12^{\circ}) = 60^{\circ}.$
Luas juring lingkaran dengan sudut pusat $60^{\circ}$ dan berjari-jari $\dfrac{20}{2} = 10~\text{cm}$ adalah
$\begin{aligned} L & = \dfrac{60^{\circ}} {360^{\circ}} \pi r^2 \\ & = \dfrac{1}{6} \cdot 3,14 \cdot 100 \\ & = \dfrac{1}{6} \cdot 314 = 52\dfrac13. \end{aligned}$
Jadi, luas potongan piza terbesar adalah $\boxed{52\dfrac13~\text{cm}^2}$
(Jawaban C)

[collapse]

Soal Nomor 1

Suatu pinjaman akan segera dilunasi dengan menerapkan sistem anuitas bulanan. Jika besar angsuran Rp120.000,00 dan bunganya sebesar Rp300.000,00, maka anuitas pinjaman tersebut sebesar $\cdots \cdot$
A. Rp120.000,00
B. Rp180.000,00
C. Rp300.000,00
D. Rp360.000,00
E. Rp420.000,00

Pembahasan

Diketahui:
$$\begin{aligned} A_n & = \text{Rp}120.000,00 \\ B_n & = \text{Rp}300.000,00 \end{aligned}$$Anuitas $A$ adalah nilai konstan yang merupakan jumlah dari angsuran dan bunga. Kita peroleh
$$\begin{aligned} A & = A_n + B_n \\ & = 120.000 + 300.000 \\ & = 420.000. \end{aligned}$$Jadi, anuitas pinjaman tersebut sebesar $\boxed{\text{Rp}420.000,00}$
(Jawaban E)

[collapse]

Soal Nomor 24

Sebuah foto ditempelkan pada karton seperti pada gambar. Di sebelah kiri dan kanan foto masih terdapat bagian karton masing-masing selebar $3$ cm, sedangkan bagian atas dan bawah karton belum diketahui ukurannya. Diketahui bahwa foto dan karton sebangun.
Kesebangunan pada bingkai foto

Luas karton yang tidak tertutup foto adalah $\cdots~\text{cm}^2$
A. $288$                       C. $432$
B. $324$                       D. $516$

Pembahasan

Perhatikan sketsa gambar berikut.
Dalam sketsa gambar di atas, dimisalkan $x$ sebagai lebar bagian atas dan bawah karton terhadap foto. Karena karton dan foto sebangun, maka berlaku

$\begin{aligned} \dfrac{30}{40} & = \dfrac{24}{40-2x} \\ \dfrac34 & = \dfrac{24}{40-2x} \\ 3(40-2x) & = 4(24) \\ 120- 6x & = 96 \\ 6x & = 24 \\ x & = 4 \end{aligned}$
Lebar foto = $40-2x=40-2(4)$ $=32~\text{cm}.$
Luas karton yang tidak tertutup foto adalah luas karton dikurangi luas foto, yaitu
$\begin{aligned} L & = L_{\text{karton}}- L_{\text{foto}} \\ & = (30 \times 40)- (24 \times 32) \\ & = 1.200- 768 = 432~\text{cm}^2 \end{aligned}$
(Jawaban C) 

[collapse]

Soal Nomor 1

Tabel berikut menyajikan data nilai keseluruhan dari lima orang pemain pada suatu pertandingan.
$$\begin{array}{|c|c|} \hline \text{Nama} & \text{Nilai} \\ \hline \text{Ahmad} & 51 \\ \text{Boni} & 63 \\ \text{Cecilia} & 15 \\ \text{Diastra} & 38 \\ \text{Erlang} & 22 \\ \hline \end{array}$$Jika sejumlah nilai milik Boni diambil dan diberikan kepada Cecilia, maka median dari nilai kelima orang tersebut naik. Besar nilai yang dipindahkan tersebut adalah $\cdots \cdot$
A. 27                            D. 24
B. 26                            E. 23
C. 25

Pembahasan

Misalkan besar nilai yang dipindahkan dari Boni ke Cecilia adalah $x.$ Ini berarti, nilai Cecilia menjadi $x+15,$ sedangkan nilai Boni menjadi $63-x.$ Mari tinjau dua kasus berikut.
Kasus 1: $x = 24.$
Saat $x = 24,$ nilai Cecilia adalah $24+15=39,$ sedangkan nilai Boni $63-24=39.$ Dengan demikian, data nilai menjadi $22, 38, 39, 39, 63$ yang menunjukkan bahwa mediannya sekarang naik menjadi $39.$
Kasus 2: $x > 24.$
Saat $x > 24,$ nilai Cecilia $\ge 40,$ tetapi nilai Boni $\le 38.$ Akibatnya, median data nilai baru ditentukan oleh, nilai Boni atau nilai Erlang (saat nilai Boni $\le$ nilai Erlang). Bagaimana pun kondisinya, median data tersebut justru tidak naik.
Jadi, dapat disimpulkan bahwa besar nilai yang dipindahkan tersebut agar mediannya naik adalah $\boxed{24}.$

[collapse]

Soal Nomor 2

Ardi menuliskan lima bilangan bulat positif. Modus dari kumpulan bilangan bulat tersebut senilai 2 lebih besar dari mediannya, sedangkan mediannya 2 lebih besar dari rata-ratanya. Nilai terkecil yang mungkin untuk modus tersebut adalah $\cdots \cdot$
A. 5                       C. 9                      E. 13
B. 7                       D. 11

Pembahasan

Misalkan rata-rata dari lima bilangan bulat positif tersebut adalah $x.$ Ini berarti, mediannya adalah $x+2,$ sedangkan modusnya adalah $x+4.$ Mula-mula, asumsikan lima bilangan bulat positif tersebut adalah
$$x, x, x, x, x.$$Agar mediannya $x+2$ dan modusnya $x+4,$ tetapi dengan tetap mempertahankan rata-rata, dapat dibuat data baru
$$x-k, x-j, (x+2), (x+4), (x+4)$$untuk suatu bilangan cacah $k, j$ yang memenuhi $k+j = 10.$ Untuk membuat modus sekecil mungkin, nilai $x$ harus dibuat sekecil mungkin. Ini berarti, $k$ juga dibuat demikian. Perhatikan bahwa $k \neq 5$ karena akan mengakibatkan bilangan kedua juga berbentuk $x-5$ (modusnya menjadi ganda). Oleh karena itu, pilih $k=6$ dan $j=4$ sehingga $x-6$ sebagai bilangan pertama dan $x-4$ sebagai bilangan kedua. Agar modus sekecil mungkin, pilih bilangan pertama $x-6=1$ sehingga $x = 7.$ Dengan demikian, lima bilangan bulat positif tersebut adalah
$$1, 3, 9, 11, 11.$$Jadi, nilai terkecil yang mungkin untuk modus tersebut adalah $\boxed{11}.$
(Jawaban D)

[collapse]

Soal Nomor 6

Dari angka $0, 1, 2, 3, 4$, dan $5$ akan dibentuk bilangan yang terdiri dari tiga angka. Banyaknya bilangan yang dapat dibentuk jika angka $2$ tidak boleh diulang adalah $\cdots \cdot$
A. $125$                         D. $225$
B. $165$                         E. $281$
C. $170$

Pembahasan

Banyaknya bilangan tiga angka yang dibentuk dari angka $0, 1, 2, 3, 4$, dan $5$ serta boleh berulang adalah $5×6×6=180$.
Perhatikan bahwa posisi angka ratusan tidak boleh diisi oleh angka $0$ (non-leading zero).
Banyak bilangan tiga angka yang memuat dua angka $2$ dalam format: $22A$, $A$ diisi oleh $5$ angka lain dan ada $3$ total posisi (ratusan, puluhan, satuan) yang dapat ditempati oleh $A$ adalah $3 \times 5=15$. Perhatikan bahwa angka $0$ tidak boleh diisi di posisi ratusan sehingga $022$ harus diabaikan. Jadi, hanya ada $14$ bilangan yang terbentuk.
Banyaknya bilangan tiga angka yang ketiganya adalah angka $2$ jelas hanya ada $1$, yaitu $222$.
Dengan menggunakan prinsip komplemen, banyak bilangan tiga angka di mana angka $2$ tidak boleh diulang adalah $\boxed{180-14-1 = 165}$
(Jawaban B)

[collapse]

Leave a Reply

Your email address will not be published. Required fields are marked *