Turunan fungsi aljabar merupakan salah satu subbab dari kalkulus diferensial. Di sini, kita akan mempelajari tentang aturan-aturan turunan pada fungsi aljabar. Lebih lanjut, aturan turunan tersebut selanjutnya diterapkan untuk menyelesaikan persoalan fungsi trigonometri. Di sesi ini, kita khusus membahas soal mengenai turunan fungsi aljabar. Soal-soal dikumpulkan dari berbagai literatur dengan tingkat kesulitan yang variatif untuk meningkatkan dan menguji pemahaman pembaca. Soal juga dapat diunduh dalam format PDF melalui tautan berikut: Download (PDF, 280 KB).
Aturan Turunan
Berikut ini merupakan beberapa aturan turunan dasar yang selanjutnya digunakan untuk menyelesaikan persoalan turunan fungsi aljabar.
- Aturan turunan fungsi konstan
Jika $y = f(x) = c$ dengan $c \in \mathbb{R}$, maka $f'(x) = \dfrac{\text{d}y}{\text{d}x} = 0$.
- Aturan turunan fungsi identitas
Jika $y = f(x) = x$, maka $f'(x) = \dfrac{\text{d}y}{\text{d}x} = 1.$ - Aturan turunan fungsi pangkat
Jika $y = f(x) = x^n$, maka $f'(x) = \dfrac{\text{d}y}{\text{d}x} = nx^{n-1}.$
- Aturan turunan fungsi berbentuk $y = ax^n$
Jika $y = f(x) = ax^n$ untuk suatu $a \in \mathbb{R}$, maka $f'(x) = \dfrac{\text{d}y}{\text{d}x} = anx^{n-1}.$
- Turunan jumlah dan selisih fungsi-fungsi
Jika $f(x) = y = u \pm v$ dengan $u$ dan $v$ keduanya fungsi dari $x$, maka $f'(x) = \dfrac{\text{d}y}{\text{d}x} = u’ \pm v’.$
Secara verbal: turunan dari jumlah/selisih fungsi-fungsi sama dengan jumlah/selisih dari turunan masing-masing fungsi tersebut.
- Aturan hasil kali dalam turunan
Jika $f(x) = y = u \cdot v$ dengan $u$ dan $v$ keduanya fungsi dari $x$, maka $f'(x) = \dfrac{\text{d}y}{\text{d}x} = u’ \cdot v + u \cdot v’.$
Jika $f(x) = y = u \cdot v \cdot w$ dengan $u$, $v$, dan $w$ keduanya fungsi dari $x$, maka
$$\begin{aligned} f'(x) & = \dfrac{\text{d}y}{\text{d}x} \\ & = u \cdot v \cdot w’ + u \cdot v’ \cdot w + u’ \cdot v \cdot w \end{aligned}$$
- Aturan hasil bagi dalam turunan
Jika $f(x) = y = \dfrac{u}{v}$ dengan $u$ dan $v$ keduanya fungsi dari $x$, maka
$f'(x) = \dfrac{\text{d}y}{\text{d}x} = \dfrac{u’ \cdot v-u \cdot v’}{v^2}.$
Baca Juga: Soal dan Pembahasan – Konsep, Sifat, dan Aturan dalam Perhitungan Turunan (Dasar)
Quote by Pam Leo
Bagian Pilihan Ganda
Soal Nomor 1
Jika $f(x)=x^2-\dfrac{1}{x}+1$, maka $f'(x)= \cdots \cdot$
A. $x-x^{-2}$
B. $x+x^{-2}$
C. $2x+x^{-2}+1$
D. $2x-x^{-2}+1$
E. $2x+x^{-2}$
Gunakan aturan turunan dasar.
$\begin{aligned} f(x) & =x^2-\dfrac{1}{x}+1 \\ & = x^2-x^{-1}+1 \\ f'(x) & = 2x^{2-1}-(-1)x^{-1-1}+0 \\ & = 2x+x^{-2} \end{aligned}$
Jadi, hasil dari $\boxed{f'(x) = 2x+x^{-2}}$
(Jawaban E)
Soal Nomor 2
Jika $g(x) = \dfrac{1}{x}+x^3-\sqrt{2x}$, maka $g'(x) = \cdots \cdot$
A. $-\dfrac{1}{x^2}+3x^2-\dfrac{1}{\sqrt{2x}}$
B. $-x^3+3x^2+\dfrac12\sqrt{2x}$
C. $\dfrac{1}{x^2}+x^2-2$
D. $\dfrac{1}{x^2}+3x^2-2$
E. $\dfrac{1}{x^2}+3x^2+\dfrac12\sqrt{2x}$
Gunakan aturan turunan dasar.
$$\begin{aligned} g(x) & = \dfrac{1}{x}+x^3-\sqrt{2x} \\ & = x^{-1}+x^3-\sqrt{2}x^{1/2} \\ g'(x) & = -1x^{-1-1}+3x^{3-1}-\sqrt{2} \cdot \dfrac12x^{1/2-1} \\ & = -x^{-2}+3x^2-\dfrac12\sqrt2x^{-1/2} \\ & = -\dfrac{1}{x^2}+3x^2-\dfrac{\sqrt2}{2\sqrt{x}} \\ & = -\dfrac{1}{x^2}+3x^2-\dfrac{1}{\sqrt{2x}} \end{aligned}$$Catatan: $\dfrac{\sqrt2}{2} = \dfrac{1}{\sqrt2}$
Jadi, hasil dari $\boxed{g'(x) = -\dfrac{1}{x^2}+3x^2-\dfrac{1}{\sqrt{2x}}}$
(Jawaban A)
Baca Juga: Pembuktian Turunan Fungsi Trigonometri Dasar
Soal Nomor 3
Jika $R(t) = t\sqrt{t} + \dfrac{1}{t\sqrt{t}}$, maka $\dfrac{\text{d}R(t)}{\text{d}t}$ sama dengan $\cdots \cdot$
A. $\dfrac32\sqrt{t} + \dfrac{3}{2\sqrt{t}}$
B. $\dfrac32\sqrt{t} -\dfrac{3}{2\sqrt{t}}$
C. $\dfrac32\sqrt{t} -\dfrac{3}{2t^2\sqrt{t}}$
D. $\dfrac23\sqrt{t} -\dfrac{1}{t^2\sqrt{t}}$
E. $\dfrac32\sqrt{t} + \dfrac{1}{t^2\sqrt{t}}$
Diketahui
$\begin{aligned} R(t) & = t\sqrt{t} + \dfrac{1}{t\sqrt{t}} = t \cdot t^{1/2} + \dfrac{1}{t \cdot t^{1/2}} \\ & = t^{3/2} + t^{-3/2} \end{aligned}$
Dengan menggunakan aturan dasar turunan, diperoleh
$\begin{aligned} \dfrac{\text{d}R(t)}{\text{d}t} & = \dfrac32t^{3/2-1}-\dfrac32t^{-3/2-1} \\ & = \dfrac32t^{1/2}-\dfrac32t^{-5/2} \\\\ & = \dfrac{3}{2}\sqrt{t}-\dfrac{3}{2t^2\sqrt{t}} \end{aligned}$
Jadi, hasil dari $\boxed{\dfrac{\text{d}R(t)}{\text{d}t} = \dfrac{3}{2}\sqrt{t}-\dfrac{3}{2t^2\sqrt{t}}}$
(Jawaban C)
Baca Juga: Soal dan Pembahasan – Turunan Fungsi Trigonometri
Soal Nomor 4
Turunan pertama dari $f(x)=\dfrac{4}{x-3}-\dfrac{6}{x}$ adalah $f'(x)$. Nilai dari $f'(1)$ adalah $\cdots \cdot$
A. $-5$ C. $4$ E. $10$
B. $2$ D. $5$
Gunakan aturan turunan dasar untuk mencari turunan pertama dari fungsi $f(x)$.
$$\begin{aligned} f(x) & =\dfrac{4}{x-3}-\dfrac{6}{x} \\ & = 4(\underbrace{x-3}_{u})^{-1}-6x^{-1} \\ f'(x) & = 4(-1)(x-3)^{-2} \cdot \underbrace{1}_{u’}-6(-1)x^{-2} \\ & = -\dfrac{4}{(x-3)^2}+\dfrac{6}{x^2} \end{aligned}$$Substitusi $x=1$ dan kita akan peroleh
$\begin{aligned} f'(1) & = -\dfrac{4}{(\color{blue}{(1)}-3)^2}+\dfrac{6}{\color{blue}{(1)}^2} \\ & = -\dfrac{4}{4} + \dfrac{6}{1} \\ & = -1+6 = 5 \end{aligned}$
Jadi, nilai dari $\boxed{f'(1) = 5}$
(Jawaban D)
Baca Juga: Soal dan Pembahasan – Aplikasi Turunan (Diferensial)
Soal Nomor 5
Turunan pertama dari $H(x) = x^{2/3}(4x-5)$ adalah $\cdots \cdot$
A. $\dfrac{20\sqrt[3]{x^2}}{3} + \dfrac{10}{3\sqrt[3]{x}}$
B. $\dfrac{20\sqrt[3]{x^2}}{3} -\dfrac{10}{3\sqrt[3]{x}}$
C. $\dfrac{10\sqrt[3]{x}}{3} -\dfrac{20}{3\sqrt[3]{x}}$
D. $\dfrac{-20\sqrt[3]{x^2}}{3} -\dfrac{10}{3\sqrt[3]{x}}$
E. $\dfrac{4x-5}{3\sqrt[3]{x}} -\dfrac{4}{\sqrt[3]{x}}$
Diketahui
$\begin{aligned} H(x) & = x^{2/3}(4x-5) \\ & = 4x^{2/3} \cdot x-5x^{2/3} \\ & = 4x^{5/3}-5x^{2/3}. \end{aligned}$
Dengan menggunakan aturan dasar turunan, diperoleh
$\begin{aligned} H'(x) & = 4 \cdot \dfrac53 \cdot x^{5/3-1}-5 \cdot \dfrac23 \cdot x^{2/3-1} \\ & = \dfrac{20}{3}x^{2/3}-\dfrac{10}{3}x^{-1/3} \\ & = \dfrac{20\sqrt[3]{x^2}}{3} -\dfrac{10}{3\sqrt[3]{x}}. \end{aligned}$
Jadi, turunan pertama dari $H(x)$ adalah $\boxed{\dfrac{20\sqrt[3]{x^2}}{3} -\dfrac{10}{3\sqrt[3]{x}}}$
(Jawaban B)
Soal Nomor 6
Diberikan $f(r) = 2r^{\frac32}-2r^{\frac12}$. Nilai $f'(1)$ sama dengan $\cdots \cdot$
A. $0$ C. $2$ E. $5$
B. $1$ D. $4$
Diketahui $f(r) = 2r^{\frac32}-2r^{\frac12}.$
Dengan menggunakan aturan turunan dasar, turunan pertama fungsi $f(r)$ adalah
$\begin{aligned} f'(r) & = 2 \cdot \dfrac32r^{\frac32-1}-2 \cdot \dfrac12r^{\frac12-1} \\ & = 3r^{\frac12}-r^{-\frac12} \\ & = 3\sqrt{r}-\dfrac{1}{r}. \end{aligned}$
Untuk $r=1$, didapat
$\boxed{f'(1)= 3\sqrt{1}-\dfrac{1}{1} = 3-1=2}$
(Jawaban C)
Soal Nomor 7
Diketahui $y = \dfrac13x^3-\dfrac32x^2+2x-6$. Nilai $x$ yang membuat $y’ = 0$ adalah $\cdots \cdot$
A. $-1$ atau $1$
B. $-1$ atau $0$
C. $0$ atau $2$
D. $1$ atau $2$
E. $1$ atau $3$
Diketahui $y = \dfrac13x^3-\dfrac32x^2+2x-6.$
Turunan pertama dari $y$ adalah
$\begin{aligned} y’ & = \dfrac13(3)x^2-\dfrac32(2)x+2-0 \\ & = x^2-3x+2. \end{aligned}$
Misalkan $y’ = 0$ sehingga diperoleh
$\begin{aligned} x^2-3x+2 & = 0 \\ (x-2)(x-1) & = 0 \\ x = 2~\text{atau}&~x = 1. \end{aligned}$
Jadi, nilai $x$ yang membuat $y’=0$ adalah $1$ atau $2$.
(Jawaban D)
Soal Nomor 8
Jika $f(m) = 4 + \sqrt[4]{m^3} + 3 \sqrt[3]{m^2}$, maka nilai $f'(1) = \cdots \cdot$
A. $\dfrac{11}{4}$ C. $\dfrac74$ E. $\dfrac14$
B. $\dfrac{9}{4}$ D. $\dfrac54$
Diketahui
$\begin{aligned} f(m) & = 4 + \sqrt[4]{m^3} + 3 \sqrt[3]{m^2} \\ & = 4 + m^{3/4} + 3m^{2/3}. \end{aligned}$
Turunan pertama dari $f(m)$ adalah
$$\begin{aligned} f'(m) & = 0 + \dfrac34m^{3/4-1} + \cancel{3} \cdot \dfrac{2}{\cancel{3}}m^{2/3-1} \\ & = \dfrac34m^{-1/4}+2m^{-1/3} \\ & = \dfrac{3}{4\sqrt[4]{m}}+\dfrac{2}{\sqrt[3]{m}}. \end{aligned}$$Untuk $m=1$, diperoleh
$f'(1) = \dfrac{3}{4\sqrt[4]{1}}+\dfrac{2}{\sqrt[3]{1}} = \dfrac34 + 2 = \dfrac{11}{4}.$
Jadi, nilai dari $\boxed{f'(1)=\dfrac{11}{4}}$
(Jawaban A)
Soal Nomor 9
Jika turunan pertama dari $y = (x^2+1)(x^3-1)$ adalah $y’ = ax^4+bx^2+cx$ dengan $a,b,c \in \mathbb{Z},$ maka nilai dari $abc = \cdots \cdot$
A. $-60$ C. $0$ E. $60$
B. $-30$ D. $30$
Diketahui
$\begin{aligned} y & = (x^2+1)(x^3-1) \\ & = x^5-x^2+x^3-1. \end{aligned}$
Dengan menggunakan aturan dasar turunan, diperoleh
$\begin{aligned} y’ & = 5x^{5-1}-2x^{2-1}+3x^{3-1}-0 \\ & = 5x^4-2x+3x^2 \\ & = 5x^4+3x^2-2x. \end{aligned}$
Karena itu, kita peroleh $a = 5$, $b = 3$, dan $c = -2$.
Catatan: $\mathbb{Z}$ menyatakan simbol untuk himpunan bilangan bulat.
Jadi, $\boxed{abc = 5(3)(-2) = -30}$
(Jawaban B)
Soal Nomor 10
Turunan pertama dari $f(x)=x^2(3x-1)^3$ adalah $\cdots \cdot$
A. $x(15x+2)(3x-1)^2$
B. $x(15x-2)(3x-1)^2$
C. $x(9x+2)(3x-1)^2$
D. $x(18x+2)(3x-1)^2$
E. $x(18x-2)(3x-1)^2$
Diketahui $f(x)=x^2(3x-1)^3.$
Gunakan aturan turunan dasar (terutama aturan hasil kali) dan aturan rantai.
Misalkan
$$\begin{aligned} u & = x^2 \implies u’ = 2x \\ v & = (\underbrace{3x-1}_{p})^3 \implies v’ = 3(3x-1)^2(\underbrace{3}_{p’}) = 9(3x-1)^2. \end{aligned}$$Dengan aturan hasil kali dalam turunan, kita peroleh
$$\begin{aligned} f'(x) & = u’v+uv’ \\ & = (2x)(3x-1)^3+(x^2)(9(3x-1)^2) \\ & = (3x-1)^2(2x(3x-1)+9x^2) \\ & = (3x-1)^2(6x^2-2x+9x^2) \\ & = (3x-1)^2(15x^2-2x) \\ & = x(15x-2)(3x-1)^2. \end{aligned}$$Jadi, turunan pertama dari $f(x)$ adalah $\boxed{x(15x-2)(3x-1)^2}$
(Jawaban B)
Soal Nomor 11
Jika $y = x\sqrt{2x^2+3}$, maka $\dfrac{\text{d}y}{\text{d}x}=\cdots \cdot$
A. $(4x^2-3)(2x^2+3)^{-1/2}$
B. $(4x^2+3)(2x^2+3)^{-1/2}$
C. $2x(2x^2+3)(2x^2+3)^{-1/2}$
D. $x(2x+3)(2x^2+3)^{-1/2}$
E. $(2x^2+3)^{1/2}$
Diketahui
$\begin{aligned} y & = x\sqrt{2x^2+3} \\ & = \sqrt{x^2(2x^2+3)} \\ & = \sqrt{2x^4+3x^2} \\ & = (\underbrace{2x^4+3x^2}_{u})^{1/2} \end{aligned}$
Dengan menggunakan aturan rantai, diperoleh turunan pertama $y$, yaitu
$$\begin{aligned} \dfrac{\text{d}y}{\text{d}x} & = \dfrac12(2x^4+3x^2)^{-1/2} \cdot (\underbrace{8x^3+6x}_{u’}) \\ & = \dfrac12(2(4x^3+3x))(2x^4+3x^2)^{-1/2} \\ & = (4x^3+3x)(2x^4+3x^2)^{-1/2} \\ & = x(4x^2+3) \cdot \dfrac{1}{x}(2x^2+3)^{-1/2} \\ & = (4x^2+3)(2x^2+3)^{-1/2} \end{aligned}$$Jadi, hasil dari $\boxed{\dfrac{\text{d}y}{\text{d}x}=(4x^2+3)(2x^2+3)^{-1/2}}$
(Jawaban B)
Soal Nomor 12
Jika $f(x) = \sqrt{\dfrac{x+2}{x-1}}$ dengan $x \neq 1,$ maka $f'(x) = \cdots \cdot$
A. $\dfrac{6x-6}{\sqrt{(2x-1)^3}}$
B. $\dfrac{-3}{2(x-1)^{3/2}\sqrt{x+2}}$
C. $2x\sqrt{1-x^2}-\dfrac{x(x^2+3)}{\sqrt{1-x^2}}$
D. $-\dfrac{9}{4\sqrt{(3x+2)^3}}$
E. $\dfrac{3x^2-4}{2\sqrt{x^3-4x}}$
Diketahui $f(x) = \sqrt{\underbrace{\dfrac{x+2}{x-1}}_{p}}.$
Pertama, kita akan mencari turunan dari $p$ terlebih dahulu menggunakan aturan hasil bagi. Misalkan:
$u = x+2 \implies u’ = 1$
$v = x-1 \implies v’ = 1$
Turunan dari $p$ adalah
$\begin{aligned} p’ & = \dfrac{u’v-uv’}{v^2} \\ & = \dfrac{1(x-1)-(x+2)(1)}{(x-1)^2} \\ & = \dfrac{x-1-x-2}{(x-1)^2} \\ & = \dfrac{-3}{(x-1)^2}. \end{aligned}$
Sekarang, akan dicari turunan $f(x)$ menggunakan aturan rantai.
$$\begin{aligned} f(x) & = \left(\underbrace{\dfrac{x+2}{x-1}}_{p}\right)^{1/2} \\ \implies f'(x) & = \dfrac12\left(\dfrac{x+2}{x-1}\right)^{-1/2} \cdot \underbrace{\dfrac{-3}{(x-1)^2}}_{p’} \\ & = \dfrac12 \cdot \sqrt{\dfrac{x-1}{x+2}} \cdot \dfrac{-3}{(x-1)^2} \\ & = \dfrac{-3}{2(x-1)^{3/2}\sqrt{x+2}} \end{aligned}$$Jadi, $\boxed{f'(x) = \dfrac{-3}{2(x-1)^{3/2}\sqrt{x+2}}}$
(Jawaban B)
Soal Nomor 13
Diketahui $f(x) = |x|.$ Jika turunan pertamanya adalah $f'(x)$, maka nilai dari $f'(999) = \cdots \cdot$
A. $0$ C. $\dfrac{1}{999}$ E. $999$
B. $1$ D. $2$
Diketahui $y = f(x) = |x|.$
Akan dicari turunan dari $y$.
$\begin{aligned} y & = |x| \\ \text{Kuadratkan}&~\text{kedua ruas} \\ y^2 & = x^2 \\ 2y \dfrac{\text{d}y}{\text{d}x} & = 2x \\ \dfrac{\text{d}y}{\text{d}x} & = \dfrac{x}{y} = \dfrac{x}{|x|} \end{aligned}$
Untuk $x = 999$, diperoleh
$\boxed{f'(999) = \dfrac{999}{|999|} = 1}$
(Jawaban B)
Soal Nomor 14
Turunan pertama dari $y=(2x+1)^5(x+1)$ ditulis sebagai $\dfrac{\text{d}y}{\text{d}x}$. Jika $\dfrac{\text{d}y}{\text{d}x} = (ax+b)^4(cx+d)$ dengan $a,b,c,d$ merupakan bilangan bulat positif, maka nilai dari $a+b+c+d = \cdots \cdot$
A. $20$ C. $26$ E. $29$
B. $24$ D. $27$
Diketahui $y=(2x+1)^5(x+1).$
Gunakan aturan turunan dasar (terutama aturan hasil kali) dan aturan rantai.
$$\begin{aligned} u & = (\underbrace{2x+1}_{p})^5 \implies u’ = 5(2x+1)^4(\underbrace{2}_{p’}) = 10(2x+1)^4 \\ v & = x+1 \implies v’ = 1 \end{aligned}$$Dengan aturan hasil kali dalam turunan, kita peroleh
$$\begin{aligned} y’ & = u’v+uv’ \\ & = 10(2x+1)^4(x+1) + (2x+1)^5(1) \\ & = (2x+1)^4(10(x+1)+(2x+1)) \\ &= (2x+1)^4(10x+10+2x+1) \\ & = (2x+1)^4(12x+11) \end{aligned}$$Karena diketahui $y’ = \dfrac{\text{d}y}{\text{d}x} = (ax+b)^4(cx+d)$, didapat $a = 2$, $b=1$, $c=12$, dan $d=11$ sehingga $$\boxed{a+b+c+d=2+1+12+11=26}$$(Jawaban C)
Soal Nomor 15
Turunan pertama dari invers fungsi $f(x) = \dfrac{x-1}{2}$ adalah $\dfrac{\text{d}f^{-1}(x)}{\text{d}x} = \cdots \cdot$
A. $-2$ C. $-\dfrac12$ E. $2$
B. $-1$ D. $\dfrac12$
Diketahui $f(x) = \dfrac{x-1}{2}$.
Pertama, akan dicari invers fungsi $f(x)$ terlebih dahulu.
Misalkan $f(x) = y$.
$\begin{aligned} y & = \dfrac{x-1}{2} \\ 2y & = x-1 \\ 2y+1 & = x \\ 2y+1 & = f^{-1}(y) \\ 2x+1 & = f^{-1}(x) \end{aligned}$
Jadi, invers fungsi $f(x)$ adalah $f^{-1}(x) = 2x + 1$.
Turunan pertamanya dapat dicari dengan menggunakan aturan dasar turunan, yaitu $\boxed{\dfrac{\text{d}f^{-1}(x)}{\text{d}x} = 2}$
(Jawaban E)
Soal Nomor 16
Invers dari turunan pertama fungsi $f(x)=3x^2+4x-2$ adalah $\cdots \cdot$
A. $\dfrac{x-4}{6}$ D. $\dfrac{6}{x+4}$
B. $\dfrac{x+4}{6}$ E. $\dfrac{x-4}{x+4}$
C. $\dfrac{6}{x-4}$
Diketahui $f(x) = 3x^2+4x-2.$
Pertama, kita akan mencari turunan pertamanya dulu.
$\begin{aligned} f'(x) & = 3(2)x^{2-1}+4(1)x^{1-1}-0 \\ & = 6x + 4 \end{aligned}$
Selanjutnya, kita akan mencari invers dari $f'(x) = 6x + 4$.
Misalkan $f'(x) = y$ sehingga
$\begin{aligned} y & = 6x + 4 \\ y-4 & = 6x \\ x & = \dfrac{y-4}{6} \\ f^{-1′}(y) & = \dfrac{y-4}{6} \\ f^{-1′}(x) & = \dfrac{x-4}{6}. \end{aligned}$
Jadi, invers dari turunan pertama $f(x)$ adalah $\boxed{\dfrac{x-4}{6}}$
(Jawaban A)
Baca: Soal dan Pembahasan – Komposisi dan Invers Fungsi
Soal Nomor 17
Jika $P(x) = \sqrt[3]{x}$, maka $P(x)-3xP'(x)$ sama dengan $\cdots \cdot$
A. $0$ C. $2 \sqrt[3]{x}$ E. $x \sqrt[3]{x}$
B. $1$ D. $3 \sqrt[3]{x}$
Diketahui $P(x) = \sqrt[3]{x} = x^{1/3}$.
Turunan pertama dari $P(x)$ adalah $P'(x) = \dfrac13x^{1/3-1} = \dfrac13x^{-2/3}.$
Dengan demikian,
$$\begin{aligned} P(x)-3xP'(x) & = \sqrt[3]{x}-\cancel{3}x \cdot \dfrac{1}{\cancel{3}})x^{-2/3} \\ & = \sqrt[3]{x}-x^{-2/3+1} \\ & = \sqrt[3]{x}-\sqrt[3]{x} = 0. \end{aligned}$$Jadi, hasil dari $\boxed{P(x)-3xP'(x) = 0}$
(Jawaban A)
Soal Nomor 18
Jika $f\left(\dfrac{x-3}{2x+1}\right) = x^2+x-2$, maka nilai dari $f'(1) = \cdots \cdot$
A. $-49$ C. $0$ E. $49$
B. $-7$ D. $7$
Diketahui $f\left(\dfrac{x-3}{2x+1}\right) = x^2+x-2.$
Pertama, kita cari turunan dari $p = \dfrac{x-3}{2x+1}$ menggunakan aturan hasil bagi.
Misalkan:
$u = x-3 \implies u’ = 1$
$v = 2x+1 \implies v’ = 2$
Dengan demikian,
$\begin{aligned} p’ & = \dfrac{u’v-uv’}{v^2} \\ & = \dfrac{1(2x+1)-(x-3)(2)}{(2x+1)^2} \\ & = \dfrac{2x+1-2x+6}{(2x+1)^2} \\ & = \dfrac{7}{(2x+1)^2}. \end{aligned}$
Dengan menggunakan aturan rantai, kita akan mencari turunan dari $f(x)$.
$$\begin{aligned} f\left(\underbrace{\dfrac{x-3}{2x+1}}_{p}\right) & = x^2+x-2 \\ \implies f’\left(\dfrac{x-3}{2x+1}\right) \cdot \underbrace{\dfrac{7}{(2x+1)^2}}_{p’} & = 2x+1 \end{aligned}$$
Kita akan mencari nilai $f'(1)$ yang berarti
$\begin{aligned} \dfrac{x-3}{2x+1}& =1 \\ x-3 & = 2x+1 \\ x & = -4. \end{aligned}$
Substitusi $x = -4$ pada $f’\left(\dfrac{x-3}{2x+1}\right) \cdot \dfrac{7}{(2x+1)^2} = 2x+1$ dan kita akan memperoleh
$$\begin{aligned} f’\left(\dfrac{-4-3}{2(-4)+1}\right) \cdot \dfrac{7}{(2(-4)+1)^2} & = 2(-4)+1 \\ f'(1) \cdot \dfrac{7}{49} & = -7 \\ f'(1) & = -7 \times 7 = -49. \end{aligned}$
Jadi, nilai dari $\boxed{f'(1) = -49}$$(Jawaban A)
Soal Nomor 19
Jika $(f \circ g)'(x) = (g \circ f)'(x)$, $g(2) = g'(2) = 2$ dan $f(2) = 1$, maka nilai dari $g'(1) = \cdots \cdot$
A. $1$ C. $3$ E. $5$
B. $2$ D. $4$
Diberikan: $g(2) = g'(2) = 2$ dan $f(2) = 1.$
Gunakan aturan rantai.
$\begin{aligned} (f \circ g)'(x) & = (g \circ f)'(x) \\ [f(g(x))]’ & = [g(f(x))]’ \\ f'(g(x)) \cdot g'(x) & = g'(f(x)) \cdot f'(x) \end{aligned}$
Sekarang, substitusi $x = 2$.
$\begin{aligned} f'(g(2)) \cdot g'(2) & = g'(f(2)) \cdot f'(2) \\ \cancel{f'(2)} \cdot 2 & = g'(1) \cdot \cancel{f'(2)} \\ 2 & = g'(1) \end{aligned}$
Jadi, nilai dari $\boxed{g'(1) = 2}$
(Jawaban B)
Baca Juga: Materi, Soal, dan Pembahasan – Fungsi Naik dan Fungsi Turun
Soal Nomor 20
Laju perubahan fungsi $f(x) = (x^2-3)^2$ pada $x=2$ adalah $\cdots \cdot$
A. $8$ C. $5$ E. $1$
B. $6$ D. $2$
Diketahui $f(x) = (x^2-3)^2 = x^4-6x^2+9$.
Laju perubahan fungsi pada saat $x=2$ dinyatakan oleh nilai turunan pertama $f(x)$ saat $x = 2$, atau secara matematis, $f'(2)$.
Dengan menggunakan aturan dasar turunan, diperoleh
$\begin{aligned} f(x) &= 4x^{4-1}-6(2)x^{2-1}+0 \\ & = 4x^3-12x \end{aligned}$
Untuk $x=2$, diperoleh
$\boxed{f'(2) = 4(2)^3-12(2) = 32-24 = 8}$
Jadi, laju perubahan fungsi $f(x)$ pada saat $x=2$ adalah $\boxed{8}$
(Jawaban A)
Soal Nomor 21
Sebuah persegi dengan sisi $x$ memiliki luas $f(x)$. Nilai $f'(6)$ adalah $\cdots \cdot$
A. $36$ C. $10$ E. $6$
B. $12$ D. $8$
Luas persegi itu dinyatakan oleh
$f(x) = x \cdot x = x^2$.
Turunan pertama $f(x)$ adalah $f'(x) = 2x$.
Substitusi $x = 6$ dan kita akan memperoleh $\boxed{f'(6) = 2(6)=12}$
(Jawaban B)
Soal Nomor 22
Besar populasi di suatu daerah $t$ tahun mendatang ditentukan oleh persamaan $p(t) = 10^3t^2-5 \cdot 10^2t + 10^6$. Laju pertambahan penduduk $5$ tahun mendatang adalah $\cdots \cdot$
A. $10.500$ jiwa per tahun
B. $10.000$ jiwa per tahun
C. $9.500$ jiwa per tahun
D. $9.000$ jiwa per tahun
E. $8.500$ jiwa per tahun
Diketahui $p(t) = 10^3t^2-5 \cdot 10^2t + 10^6$.
Laju pertambahan penduduk $5$ tahun mendatang dinyatakan oleh nilai turunan pertama $p(t)$ saat $t = 5$. Turunan pertamanya adalah
$p'(t)= 10^3(2)t-5 \cdot 10^2.$
Substitusi $t = 5$ dan kita akan memperoleh
$\begin{aligned} p'(5) & = 10^3(2)(5)-5 \cdot 10^2 \\ & =10.000-500 = 9.500 \end{aligned}$
Jadi, laju pertambahan penduduk $5$ tahun mendatang adalah $\boxed{9.500~\text{jiwa/tahun}}$
(Jawaban C)
Soal Nomor 23
Dua bilangan bulat $m$ dan $n$ memenuhi hubungan $2m-n=40$. Nilai minimum dari $p=m^2+n^2$ adalah $\cdots \cdot$
A. $320$ D. $260$
B. $295$ E. $200$
C. $280$
Diketahui $2m-n=40$.
Persamaan di atas dapat ditulis menjadi $n = 2m-40$.
Karena $p=m^2+n^2$, haruslah
$\begin{aligned} p & = m^2+(2m-40)^2 \\ & = m^2 + (4m^2-160m+1600) \\ & = 5m^2-160m+1600. \end{aligned}$
Agar $p$ minimum, turunan pertama $p$ terhadap variabel $m$ harus bernilai $0$.
$\begin{aligned} \dfrac{\text{d}p}{\text{d}m} & = 0 \\ 10m-160 & = 0 \\ 10m & = 160 \\ m & = 16 \end{aligned}$
$p$ akan minimum saat $m = 16$. Ini berarti nilai
$\begin{aligned} p & = 5m^2-160m+1600 \\ & = 5(16)^2-160(16)+1600 \\ & = 1280-2560+1600 \\ & = 320. \end{aligned}$
Jadi, nilai minimum dari $p$ adalah $\boxed{320}$
(Jawaban A)
Soal Nomor 24
Jumlah dua bilangan $p$ dan $q$ adalah $6$. Nilai minimum dari $2p^2+q^2 = \cdots \cdot$
A. $12$ C. $20$ E. $32$
B. $18$ D. $24$
Diketahui $p+q = 6$.
Persamaan di atas dapat ditulis menjadi $q = 6-p$.
Misalkan $z = 2p^2+q^2$, maka
$\begin{aligned} z & = y^2+(6-p)^2 \\ & = 2p^2 + (36-12p+p^2) \\ & = 3p^2-12p+36. \end{aligned}$
Agar $z$ minimum, turunan pertama $z$ terhadap variabel $p$ harus bernilai $0$.
$\begin{aligned} \dfrac{\text{d}z}{\text{d}p} & = 0 \\ 6p-12 & = 0 \\ 6p & = 12 \\ p & = 2 \end{aligned}$
$z$ akan minimum saat $p = 2$. Ini berarti kita peroleh
$\begin{aligned} z & = 3p^2-12p+36 \\ & = 3(2)^2-12(2)+36 \\ & = 12-24+36 \\ & = 24. \end{aligned}$
Jadi, nilai minimum dari $2p^2-q^2$ adalah $\boxed{24}$
(Jawaban D)
Soal Nomor 25
Jumlah $2$ bilangan bulat positif $x$ dan $y$ adalah $18$. Nilai maksimum dari $xy$ adalah bilangan dua-digit $\overline{ab}$. Hasil dari $a \times b = \cdots \cdot$
A. $0$ C. $12$ E. $24$
B. $8$ D. $16$
Diketahui $x+y = 18$.
Persamaan di atas dapat ditulis menjadi $y = 18-x$.
Misalkan $z = xy$, maka
$\begin{aligned} z & = x(18-x) \\ & = 18x-x^2. \end{aligned}$
Agar $z$ maksimum, turunan pertama $z$ terhadap variabel $x$ harus bernilai $0$.
$\begin{aligned} \dfrac{\text{d}z}{\text{d}x} & = 0 \\ 18-2x & = 0 \\ 2x & = 18 \\ x & = 9 \end{aligned}$
$z$ akan maksimum saat $x = 9$. Ini berarti nilai
$\begin{aligned} z & = 18x-x^2 \\ & = 18(9)-(9)^2 \\ & = 9(18-9) \\ & = 81. \end{aligned}$
Jadi, nilai maksimum dari $xy$ adalah $\overline{ab} = 81,$ artinya $a = 8$ dan $b = 1$ sehingga $\boxed{a \times b = 8 \times 1 = 8}$
(Jawaban B)
Baca Juga: Soal dan Pembahasan – Persamaan Garis Singgung Menggunakan Turunan
Soal Nomor 26
Misalkan $h(x) = 5 + (f(x))^2$ dengan grafik $f(x)$ diberikan pada gambar di bawah. Nilai $h'(0) = \cdots \cdot$
A. $-16$ C. $-5$ E. $-\dfrac13$
B. $-7$ D. $-\dfrac43$
Diketahui $h(x) = 5 + (f(x))^2.$
Turunan pertama $h(x)$ dapat dicari dengan menggunakan aturan rantai.
$\begin{aligned} h'(x) & = 0 + 2f(x) \cdot f'(x) \\ & = 2f(x) \cdot f'(x) \end{aligned}$
Jika $x = 0$, diperoleh $h'(0) = 2f(0) \cdot f'(0).$
Nilai fungsi $f$ saat $x = 0$ adalah $f(0) = 2$ (lihat grafik).
$f'(0)$ menyatakan gradien garis singgung $f(x)$ di titik $x = 0$. Tampak pada grafik bahwa garis singgung $f(x)$ di titik tersebut melalui $(-1, 6)$ dan $(0, 2)$ sehingga gradiennya adalah $f'(0) = m = \dfrac{6-2}{-1-0} = -4$.
Untuk itu,
$\begin{aligned} h'(0) & = 2f(0) \cdot f'(0) \\ & = 2(2)(-4) = -16 \end{aligned}$
Jadi, nilai dari $\boxed{h'(0) = -16}$
(Jawaban A)
Soal Nomor 27
Diketahui grafik kurva $y = f(x)$ seperti pada gambar di bawah.
Jika $h(x) = (f \circ f)(x)$ dan $h'(x)$ menyatakan turunan pertama dari $h(x)$, maka nilai $h'(-2) = \cdots \cdot$
A. $-2$ C. $0$ E. $2$
B. $-1$ D. $1$
Berdasarkan grafik $f(x)$, tampak bahwa $f(-2) = -2.$
Di titik $(-2, -2)$, terdapat garis singgung dengan kemiringan (gradien) $m = \dfrac{-2}{2} = -1$. Ini berarti $f'(-2) = -1$ karena turunan pertama fungsi di suatu titik merupakan gradien garis singgung grafik fungsi di titik tersebut.
Oleh karena itu, berdasarkan aturan rantai, kita peroleh
$\begin{aligned} h(x) & = (f \circ f)(x) = f(f(x)) \\ \implies h'(x) & = f'(f(x)) \cdot f'(x) \\ h'(-2) & = f'(f(-2)) \cdot f'(-2) \\ & = f'(-2) \cdot f'(-2) \\ & = -1 \cdot (-1) = 1. \end{aligned}$
Jadi, nilai dari $\boxed{h'(-2) = 1}$
(Jawaban D)
Soal Nomor 28
Perhatikan grafik fungsi $f(x)$ dan $g(x)$ berikut.
Jika $h(x)=\dfrac{f(x)}{g(x)}$, maka nilai dari $h'(1) = \cdots \cdot$
A. $-6$ C. $-2$ E. $2$
B. $-3$ D. $1$
Grafik fungsi $f(x)$ yang memuat $x = 1$ adalah garis lurus yang melalui titik $(0, 8)$ dan $(4, 0)$. Persamaan garisnya adalah
$\begin{aligned} 8x + 4y & = 8 \cdot 4 \\ 2x + y & = 8 \\ f(x) & = y = -2x + 8. \end{aligned}$
Untuk $x = 1$, diperoleh $f(1) = -2(1)+8 = 6.$
Turunan pertama $f(x)$ adalah
$f'(x) = -2$ sehingga $f'(1) = -2.$
Grafik fungsi $g(x)$ yang memuat $x = 1$ adalah garis lurus yang melalui titik $(0, 0)$ dan $(6, 8)$. Persamaan garisnya adalah
$g(x) = y = \dfrac86x = \dfrac43x.$
Untuk $x = 1$, diperoleh $g(1) = \dfrac43$.
Turunan pertama $g(x)$ adalah
$g'(x) = \dfrac43$ sehingga $g'(1) = \dfrac43.$
Diketahui $h(x)= \dfrac{f(x)}{g(x)}$. Dengan menggunakan aturan hasil bagi, diperoleh turunan pertama $h(x)$, yaitu
$h'(x) = \dfrac{f'(x) \cdot g(x)-f(x) \cdot g'(x)}{(g(x))^2}.$
Substitusi $x = 1$.
$\begin{aligned} h'(1) & = \dfrac{f'(1) \cdot g(1)-f(1) \cdot g'(1)}{(g(1))^2} \\ & = \dfrac{-2 \cdot \dfrac43-6 \cdot \dfrac43}{\left(\dfrac43\right)^2} \\ & = \dfrac{-\dfrac83-8}{\dfrac{16}{9}} \\ & = -\dfrac{\cancelto{2}{32}}{\cancel{3}} \cdot \dfrac{\cancelto{3}{9}}{\cancel{16}} \\ & = -2 \cdot 3 = -6 \end{aligned}$
Jadi, nilai dari $\boxed{h'(1) = -6}$
(Jawaban A)
Soal Nomor 29
Jarak yang ditempuh dalam $t$ dari suatu partikel dinyatakan dengan rumus $s(t) = t^3+2t^2+t+1$. Pada saat kecepatan partikel tersebut $21$, maka percepatannya adalah $\cdots \cdot$
A. $10$ C. $16$ E. $20$
B. $12$ D. $18$
Diketahui:
$\begin{aligned} s(t) & = t^3+2t^2+t+1 \\ v(t) & = 21 \end{aligned}$
Karena fungsi kecepatan merupakan turunan pertama dari fungsi jarak, diperoleh
$\begin{aligned} s'(t) & = v(t) \\ 3t^2+4t+1 & = 21 \\ 3t^2+4t-20 & = 0 \\ (3t+10)(t-2) & = 0 \\ \therefore t = -\dfrac{10}{3}~\text{atau}&~t = 2. \end{aligned}$
Perhatikan bahwa $t$ mewakili besaran waktu sehingga tidak mungkin bertanda negatif. Oleh karenanya, diambil $t = 2$.
Fungsi percepatan $a(t)$ merupakan turunan kedua dari fungsi jarak, atau turunan pertama dari fungsi kecepatan sehingga
$\begin{aligned} a(t) & = v'(t) = 6t + 4 \\ \text{Subs}&\text{titusi}~t = 2 \\ a(2) & = 6(2)+4=16 \end{aligned}$
Jadi, percepatan partikel itu adalah $\boxed{16}$
(Jawaban C)
Bagian Uraian
Soal Nomor 1
Carilah turunan pertama fungsi berikut ini.
$f(x)=x^6\sqrt[7]{x^5 \sqrt[5]{x^3 \sqrt{x}}}$
Ada $2$ alternatif untuk menyelesaikan persoalan ini.
Cara 1: Menyatakan dalam bentuk pangkat
Nyatakan rumus fungsinya dalam bentuk yang lebih sederhana dengan menggunakan sifat-sifat eksponen.
Cara 2: Menggunakan formula
Jika $f(x) = ax^p \sqrt[m]{x^n}$ dengan $p>1$, $m > n$, dan $m,n$ bilangan positif, maka turunan fungsi itu adalah
$\boxed{f'(x) = \dfrac{a(pm+n)}{m}x^{p-1} \sqrt[m]{x^n}}$
Cara 1: Menyatakan dalam bentuk pangkat
$\begin{aligned} f(x) & =x^6\sqrt[7]{x^5 \sqrt[5]{x^3 \sqrt{x}}} \\ & = x^6 \cdot x^{5/7} \cdot x^{\frac{3}{7 \times 5}} \cdot x^{\frac{1}{7 \times 5 \times 2}} \\ & = x^6 \cdot x^{5/7} \cdot x^{3/35} \cdot x^{1/70} \\ & = x^{6+5/7+3/35+1/70} \\ & = x^{420/70+50/70+6/70+1/70} \\ & = x^{477/70} \\ f'(x) & = \dfrac{477}{70}x^{477/70-1} \\ & = \dfrac{477}{70}x^{407/70} \\ & = \dfrac{477}{70}x^5 \cdot x^{57/70} \\ & =\dfrac{477}{70}x^5 \cdot x^{5/7 + 3/35 + 1/70} \\ & = \dfrac{477}{70}x^5\sqrt[7]{x^5 \sqrt[5]{x^3 \sqrt{x}}} \end{aligned}$
Cara 2: Menggunakan Formula
$$\begin{aligned} f(x) & =x^6\sqrt[7]{x^5 \sqrt[5]{x^3 \sqrt{x}}} \\ & = \dfrac{[(6 \times 7 + 5) \times 5 + 3] \times 2 + 1}{7 \times 5 \times 2}x^5\sqrt[7]{x^5 \sqrt[5]{x^3 \sqrt{x}}} \\ & = \dfrac{477}{70}x^5\sqrt[7]{x^5 \sqrt[5]{x^3 \sqrt{x}}} \end{aligned}$$
Soal Nomor 2
Diketahui $f(x) = (4x+3)(4-x^2)$. Buktikan bahwa $\dfrac{\text{d}f(x)}{\text{d}x} = -2(6x^2+x-8).$
Diketahui $f(x) = (4x+3)(4-x^2)$ $= 16x-4x^3+12-3x^2.$
Dengan menggunakan aturan turunan dasar, turunan pertama dari $f(x)$ adalah
$$\begin{aligned} \dfrac{\text{d}f(x)}{\text{d}x} & = 16(1)x^0-4(3)x^2+0-3(2)x^1 \\ & = 16-12x^2-6x \\ & = -2(6x^2+3x-8). \end{aligned}$$Jadi, terbukti bahwa $\boxed{\dfrac{\text{d}f(x)}{\text{d}x} = -2(6x^2+x-8)}$
Soal Nomor 3
Diberikan fungsi $f(x)=ax^2+bx+c$. Jika $f'(0) = 2$, $f'(1) = 4$, dan $f(2)=6$, carilah nilai $a, b$, dan $c$.
Diketahui $f(x)=ax^2+bx+c.$
Turunan pertamanya adalah $f'(x) = 2ax + b.$
Karena $f'(0) = 2$, kita peroleh
$2a\color{red}{(0)}+b = 2 \Leftrightarrow b = 2.$
Karena $f'(1) = 4$ dan $b=2$, kita peroleh
$\begin{aligned} 2a\color{red}{(1)}+\color{blue}{2} & = 4 \\ 2a & = 2 \\ a & = 1. \end{aligned}$
Karena $f(2) = 6$, serta $a = 1$ dan $b = 2,$ kita peroleh
$\begin{aligned} f(x) & = ax^2+bx+c \\ \implies f(2) & = 1(2)^2+2(2)+c \\ 6 & = 4+4+c \\ c & = 6-8 = -2. \end{aligned}$
Jadi, nilai $a,b,c$ berturut-turut adalah $\boxed{1, 2, -2}$
Soal Nomor 4
Diketahui $f(x) = ax^3+bx^2+cx+d$, $f(-1)=4$, $f(1) = 0$, $f'(-1)=0$, dan $f'(0) = -3$. Hitunglah nilai-nilai berikut ini.
a. $a, b, c$, dan $d$.
b. $f'(1)$ dan $f’\left(-\dfrac23\right)$
Jawaban a)
Diketahui $f(x) = ax^3+bx^2+cx+d.$
Karena $f'(0) = -3$ di mana $f'(x)$ menyatakan turunan pertama $f(x)$, dapat ditulis
$\begin{aligned} f'(x) & = 3ax^2+2bx+c \\ f'(0) & = 3a(0)^2+2b(0)+c \\ -3 & = c. \end{aligned}$
Sekarang, $f(x) = ax^3+bx^2-3x+d.$
Untuk $f(-1)=4$, kita peroleh
$$\begin{aligned} a(-1)^3+b(-1)^2-3(-1)+d & = 4 \\ -a+b+3+d & = 4 \\ -a+b+d & = 1 && (\cdots 1) \end{aligned}$$Untuk $f(1) = 0$, kita peroleh
$$\begin{aligned} a(1)^3+b(1)^2-3(1)+d & = 0 \\ a+b-3+d & = 0 \\ a+b+d & = 3 && (\cdots 2) \end{aligned}$$Eliminasi $b$ dan $d$ pada Persamaan $(1)$ dan $(2)$ di atas sehingga diperoleh $a = 1$.
Sekarang, $f(x) = x^3+bx^2-3x+d$ dan $f'(x) = 3x^2+2bx-3$.
Karena $f'(-1) = 0$, diperoleh
$\begin{aligned} 3(-1)^2 + 2b(-1)-3 & = 0 \\ 3-2b-3 & = 0 \\ b & = 0. \end{aligned}$
Substitusi nilai $b = 0$ dan $a = 1$ pada persamaan $a+b+d = 3$.
$1+0+d = 3 \Leftrightarrow d = 2$
Jadi, nilai $a,b,c,d$ berturut-turut adalah $1, 0, -3, 2.$
Jawaban b)
Diketahui $f(x) = x^3-3x+2$ sehingga $f'(x) = 3x^2-3.$
Dengan demikian,
$f'(1) = 3(1)^2-3 = 3-3 = 0$
dan
$\begin{aligned} f’\left(-\dfrac23\right) & = 3\left(-\dfrac23\right)^2-3 \\ & = -\dfrac43-3 \\ & =-\dfrac53 \end{aligned}$
Soal Nomor 5
Diberikan $f(x) = x^4+ax^2+b$. Carilah nilai $a$ dan $b$ agar $f(1)-1=f'(1)-2=0.$
Diketahui $f(x)=x^4+ax^2+b.$
Turunan pertama dari $f(x)$ adalah $f'(x)=4x^3+2ax.$
Karena $f(1)-1 = 0$, diperoleh
$\begin{aligned} (1)^4+a(1)^2 + b-1 & = 0 \\ 1+a+b-1 & = 0 \\ a + b & = 0* \end{aligned}$
Karena $f'(1)-2=0$, diperoleh
$\begin{aligned} 4(1)^3+2a(1)-2 & = 0 \\ 4+2a-2 & = 0 \\ 2a & = -2 \\ a & = -1. \end{aligned}$
Didapat $\boxed{a=-1}$. Dari $*$, kita peroleh bahwa $\boxed{b = 1}$
Soal Nomor 6
Diketahui $g(x)=ax^2+bx+c$. Carilah nilai $a, b$, dan $c$ yang memenuhi sistem persamaan berikut ini.
$g(0) = 0$ dan $(x+1)g'(x)-2g(x)+4=0$
Diketahui $g(x)=ax^2+bx+c.$
Karena $g(0)=0$, diperoleh
$a(0)^2+b(0)+c = 0 \Leftrightarrow c = 0.$
Jadi, $g(x) = ax^2+bx$ sehingga turunan pertamanya adalah $g'(x) = 2ax + b$.
Dari $(x+1)g'(x)-2g(x)+4=0$, kita peroleh
$$\begin{aligned} (x+1)(2ax+b)-2(ax^2+bx)+4 & = 0 \\ (\cancel{2ax^2}+bx+2ax+b)-\cancel{2ax^2}-2bx+4 & = 0 \\ -bx+2ax+b+4 & = 0 \\ (-b+2a)x + (b+4) & = 0 \end{aligned}$$Di ruas kiri, terdapat variabel $x$ dengan koefisien $-b+2a$ serta konstanta $b+4$, sedangkan di ruas kanan hanya ada konstanta $0$. Jika kita samakan, kita peroleh
$\begin{cases} -b+2a & = 0 && (\cdots 1) \\ b+4 & = 0 && (\cdots 2) \end{cases}$
Dari Persamaan $(2)$, diperoleh $b = -4.$
Substitusi $b=-4$ pada Persamaan $(1).$
$\begin{aligned} -\color{red}{b}+2a & = 0 \\ -\color{red}{(-4)}+2a & = 0 \\ 4+2a & = 0 \\ a & = -2 \end{aligned}$
Jadi, nilai $a, b, c$ berturut-turut adalah $\boxed{-2, -4, 0}$
Baca Juga: Materi, Soal, dan Pembahasan – Turunan Fungsi Implisit
Soal Nomor 7
Jika $a$ dan $b$ adalah bilangan real sedemikian sehingga jumlahnya $8$, tentukan nilai maksimum dan minimum dari $a^3+b^3.$
Diketahui $a+b=8$, ekuivalen dengan $a = 8-b.$
Dengan demikian,
$$\begin{aligned} a^3+b^3 & = (8-b)^3+b^3 \\ & = (512-192b+24b^2-\cancel{b^3})+\cancel{b^3} \\ & = 24b^2-192b+512. \end{aligned}$$Misalkan $f(b) = 24b^2-192b+512$. Ini merupakan fungsi kuadrat yang terbuka ke atas (seperti huruf U), artinya memiliki nilai minimum.
Untuk mencari nilai minimum, buat $f'(b) = 0$, lalu tentukan nilai $b$.
$\begin{aligned} f'(b) & = 0 \\ \Rightarrow 48b-192 & = 0 \\ 48b & = 192 \\ b & = 4 \end{aligned}$
Karena $b=4$, haruslah $a = 4.$
Jadi, nilai minimum dari $a^3+b^3$ tercapai ketika $a = b = 4$, yaitu $\boxed{4^3+4^3=128}$
Sementara itu, nilai maksimum dari $a^3+b^3$ tidak ada karena tidak terbatas di atas.
Catatan: Nilai maksimum dari $a^3+b^3$ BUKAN takhingga.