Materi, Soal, dan Pembahasan – Sudut Apit Antargaris

Jika $\theta$ menyatakan besar sudut apit antara garis $\ell$ dan garis $k$ yang masing-masing bergradien $m_{\ell}$ dan $m_k,$ maka besar sudut $\theta$ ditentukan oleh
$$\boxed{\tan \theta = \left|\dfrac{m_{\ell}-m_k}{1+m_{\ell} \cdot m_k}\right|}$$

Soal Nomor 1
Besar sudut apit antara garis $3x-4y-5=0$ dan garis $y-7x+4=0$ adalah $\cdots \cdot$
A. $15^\circ$                     D. $60^\circ$
B. $30^\circ$                    E. $90^\circ$
C. $45^\circ$

Pembahasan

Diketahui bahwa garis $\ell: 3x-4y-5=0$ bergradien $m_{\ell} = \dfrac34,$ sedangkan garis $k: y-7x+4=0$ bergradien $m_{k} = 7.$
Dengan demikian, kita peroleh
$$\begin{aligned} \tan \theta & = \left|\dfrac{m_{\ell}-m_k}{1+m_{\ell} \cdot m_k}\right| \\ \tan \theta & = \left|\dfrac{\frac34-7}{1+\frac34 \cdot 7}\right| \\ \tan \theta & = \left|\dfrac{3-28}{4 + 21}\right| \\ \tan \theta & = 1 \\ \theta & = 45^\circ \end{aligned}$$Jadi, besar sudut apit antara kedua garis tersebut adalah $\boxed{45^\circ}$
(Jawaban C)

[collapse]

Soal Nomor 2
Sudut yang dibentuk oleh garis $3x+y-6=0$ dan garis $2x-y=0$ adalah $\alpha.$ Besar sudut $\alpha$ adalah $\cdots \cdot$
A. $90^\circ$                       D. $45^\circ$
B. $75^\circ$                       E. $30^\circ$
C. $60^\circ$

Pembahasan

Diketahui bahwa garis $\ell: 3x+y-6=0$ bergradien $m_{\ell} = -3,$ sedangkan garis $k: 2x-y=0$ bergradien $m_{k} = 2.$
Dengan demikian, kita peroleh
$$\begin{aligned} \tan \alpha & = \left|\dfrac{m_{\ell}-m_k}{1+m_{\ell} \cdot m_k}\right| \\ \tan \alpha & = \left|\dfrac{-3-2}{1+(-3) \cdot 2}\right| \\ \tan \alpha & = \left|\dfrac{-5}{-5}\right| \\ \tan \alpha & = 1 \\ \alpha & = 45^\circ \end{aligned}$$Jadi, besar sudut $\alpha$ adalah $\boxed{45^\circ}$
(Jawaban D)

[collapse]

Soal Nomor 3
Nilai $m$ agar sudut apit antara garis $mx-y-8=0$ dan garis $2y-x+1=0$ memiliki besar $45^\circ$ adalah $\cdots \cdot$
A. $m = -3$ atau $m = -\dfrac13$
B. $m = -3$ atau $m = \dfrac13$
C. $m = -3$ atau $m = 3$
D. $m = -\dfrac13$ atau $m = \dfrac13$
E.$m = -\dfrac13$ atau $m = 3$

Pembahasan

Diketahui bahwa gradien garis $\ell: mx-y-8=0$ adalah $m_\ell = m,$ sedangkan gradien garis $k: 2y-x+1=0$ adalah $m_k = \dfrac12$.
Dengan demikian, kita peroleh
$$\begin{aligned} \tan \theta & = \left|\dfrac{m_{\ell}-m_k}{1+m_{\ell} \cdot m_k}\right| \\ \tan 45^\circ & = \left|\dfrac{m-\frac12}{1+m \cdot \frac12}\right| \\ 1 & = \left|\dfrac{2m-1}{2+m}\right| \\ \dfrac{2m-1}{2+m} & = \pm 1 \end{aligned}$$Dari persamaan terakhir, kita simpulkan bahwa ada 2 kemungkinan jawaban untuk nilai $m.$
Kemungkinan 1:
$$\begin{aligned} \dfrac{2m-1}{2+m} & = 1 \\ 2m-1 & = 2+m \\ m & = 3 \end{aligned}$$Kemungkinan 2:
$$\begin{aligned} \dfrac{2m-1}{2+m} & = -1 \\ 2m-1 & = -2-m \\ 3m & = -1 \\ m & = -\dfrac13 \end{aligned}$$Jadi, nilai $m$ yang dimaksud adalah $\boxed{m = -\dfrac13~\text{atau}~m = 3}$
(Jawaban E)

[collapse]

Soal Nomor 4
Misalkan $m_1, m_2, m_3$ adalah kemiringan ketiga sisi segitiga sama sisi pada bidang koordinat. Diketahui bahwa tidak ada sisi yang sejajar dengan sumbu $Y.$ Ruas garis yang bergradien $m_1$ memiliki sudut sebesar $\alpha$ terhadap sumbu $X.$ Di antara semua segitiga yang mungkin tergambar, nilai terbesar dari $m_1m_2 + m_2m_3 + m_1m_3$ adalah $\cdots \cdot$
A. $-3$                      D. $\dfrac13$

B. $-\dfrac13$                    E. $3$
C. $0$

Pembahasan

Perhatikan bahwa nilai gradien dari tiap ruas garis yang mewakili sisi dari segitiga tersebut sama dengan tangen sudut garisnya terhadap sumbu $X.$
Dari gambar, jelas bahwa $m_1 = \tan \alpha.$ Untuk menentukan nilai $m_2,$ tarik sebuah garis putus-putus vertikal dan horizontal seperti gambar di bawah.



Dengan mengingat bahwa jumlah sudut pada setiap segitiga adalah $180^\circ,$ kita tahu bahwa setiap sudut segitiga sama sisi memiliki besar $60^\circ.$ Selanjutnya, nilai $m_2$ sama dengan $$\tan (90^\circ + (30^\circ + \alpha)) = \tan (\alpha + 120^\circ).$$Terakhir, $m_3$ sama dengan $\tan (\alpha + 60^\circ).$
Langkah berikutnya adalah menjabarkan bentuk tangen pada $m_2$ dan $m_3$ dengan menggunakan identitas trigonometri.
$$\begin{aligned} m_2 = \tan (\alpha + 120^\circ) & = \dfrac{\tan \alpha + \tan 120^\circ}{1-\tan \alpha \tan 120^\circ} \\ & = \dfrac{m_1-\sqrt3}{1+\sqrt3 m_1} \color{red}{\times \dfrac{1-\sqrt3 m_1}{1-\sqrt3 m_1}} \\ & = \dfrac{(m_1-\sqrt3)(1-\sqrt3m_1)}{1-3m_1^2} \\ m_3 = \tan (\alpha + 60^\circ) & = \dfrac{\tan \alpha + \tan 60^\circ}{1-\tan \alpha \tan 60^\circ} \\ & = \dfrac{m_1+\sqrt3}{1-\sqrt3 m_1} \color{red}{\times \dfrac{1+\sqrt3 m_1}{1+\sqrt3 m_1}} \\ & = \dfrac{(m_1+\sqrt3)(1+\sqrt3m_1)}{1-3m_1^2} \end{aligned}$$Dengan demikian, diperoleh
$$\begin{aligned} m_1m_2 + m_2m_3 + m_1m_3 & = m_2m_3 + m_1(m_2 + m_3) \\ & = \dfrac{(m_1-\sqrt3)(1-\sqrt3m_1)}{1-3m_1^2} \cdot \dfrac{(m_1+\sqrt3)(1+\sqrt3m_1)}{1-3m_1^2} + m_1\left(\dfrac{(m_1-\sqrt3)(1-\sqrt3m_1)}{1-3m_1^2} + \dfrac{(m_1+\sqrt3)(1+\sqrt3m_1)}{1-3m_1^2}\right) \\ & = \dfrac{(m_1^2-3)\cancel{(1-3m_1^2)}}{\cancel{(1-3m_1^2)}(1-3m_1^2)} + m_1 \cdot \dfrac{8m_1}{1-3m_1^2} \\ & = \dfrac{m_1^2-3}{1-3m_1^2} + \dfrac{8m_1^2}{1-3m_1^2} \\ & = \dfrac{9m_1^2-3}{1-3m_1^2} \\ & = \dfrac{-3\bcancel{(1-3m_1^2)}}{\bcancel{1-3m_1^2}} \\ & = -3. \end{aligned}$$Jadi, nilai terbesar dari $m_1m_2 + m_2m_3 + m_1m_3$ adalah $\boxed{-3}$
(Jawaban A)

[collapse]

Leave a Reply

Silakan beri tanggapan dan saran, tidak perlu sungkan. Mohon juga diinformasikan melalui kolom komentar ini bila ada kesalahan pengetikan sekecil apapun (typo atau bahasa latex yang error) atau kesalahan konsep dan pembahasan soal. Terima kasih. Ganbatte!

Your email address will not be published. Required fields are marked *