Sebelumnya, mari kita sepakati penggunaan istilah dalam materi ini dulu. Sistem persamaan yang terdiri atas sebuah persamaan linear dan sebuah persamaan kuadrat yang masing-masing bervariabel dua disebut sistem persamaan linear-kuadrat (SPLK). Berdasarkan karakteristik dari bagian kuadratnya, SPLK dikelompokkan sebagai berikut.
- SPLK dengan bagian kuadrat berbentuk eksplisit.
- SPLK dengan bagian kuadrat berbentuk implisit.
SPLK Dengan Bagian Kuadrat Berbentuk Eksplisit
Bentuk umum SPLK dengan bagian kuadratnya berbentuk eksplisit dapat dituliskan sebagai berikut.
dengan bilangan real dan
Sistem ini dapat diselesaikan dengan cara mensubstitusikan persamaan linear ke persamaan kuadrat, kemudian disederhanakan dan diselesaikan dengan menggunakan metode pemfaktoran, melengkapkan kuadrat, atau rumus ABC.
Secara umum, penyelesaian dari SPLK tersebut dapat ditentukan dengan melalui langkah-langkah berikut.
Langkah 1:
Substitusikan bagian linear ke bagian kuadrat , diperoleh
Persamaan terakhir merupakan persamaan kuadrat satu variabel, yaitu . Selesaikan persamaan kuadrat tersebut untuk mencari nilai .
Langkah 2:
Nilai-nilai yang didapat pada Langkah 1 tadi (jika ada) disubstitusikan ke persamaan (agar perhitungannya lebih mudah), untuk memperoleh nilai . Kita ingat bahwa nilai yang memenuhi persamaan kuadrat disebut akar-akar dari persamaan kuadrat itu. Banyak nilai (banyak akar) dari persamaan kuadrat tersebut ditentukan oleh nilai diskriminan . Dengan demikian, banyak anggota dalam himpunan penyelesaian SPLK
ditentukan oleh nilai diskriminan dengan aturan berikut.
- Jika , maka SPLK tersebut mempunyai dua anggota dalam himpunan penyelesaiannya.
- Jika , maka SPLK tersebut mempunyai satu anggota dalam himpunan penyelesaiannya.
- Jika , maka SPLK tersebut tidak mempunyai anggota dalam himpunan penyelesaiannya. Dengan kata lain, himpunan penyelesaiannya adalah himpunan kosong, dinotasikan atau .
Anggota dari himpunan penyelesaian suatu SPLK dapat ditafsirkan secara geometris sebagai koordinat titik potong antara garis dengan parabola . Kedudukan garis terhadap parabola itu ditentukan oleh nilai diskriminan dengan aturan berikut.
- Jika , maka garis memotong parabola di dua titik yang berlainan.
- Jika , maka garis memotong parabola tepat di satu titik. Dengan kata lain, garis itu menyinggung parabola.
- Jika , maka garis dan parabola tidak berpotongan.
Perhatikan gambar kedudukan garis dan parabola berikut agar lebih jelas.
SPLK dengan Bagian Kuadrat Berbentuk Implisit
Persamaan dua variabel dan dikatakan berbentuk implisit jika persamaan itu tidak dapat dinyatakan dalam bentuk atau Persamaan implisit dinyatakan dalam bentuk
Contoh persamaan dua variabel dalam bentuk implisit adalah sebagai berikut.
a.
b.
c.
d.
Secara umum, SPLK dengan bagian kuadratnya berbentuk implisit dapat dituliskan sebagai berikut.
dengan semuanya merupakan bilangan real dan SPLK dengan bagian kuadrat berbentuk implisit dibagi menjadi dua, yaitu bentuk implisit yang tak dapat difaktorkan dan bentuk implisit yang dapat difaktorkan.
Baca Juga: Soal dan Pembahasan – SPLDV
Berikut ini disajikan beberapa soal mengenai sistem persamaan linear dan kuadrat, disertai dengan pembahasannya. Semoga bermanfaat.
Today Quote
Students don’t need a perfect teacher. They need a happy teacher, who’s gonna make them excited to come to school and grow a love for learning.
Bagian Pilihan Ganda
Soal Nomor 1
Penyelesaian dari sistem persamaan adalah
A. dan
B. dan
C. dan
D. dan
E. dan
Pembahasan
Pertama, cari titik potong dari grafik kedua persamaan tersebut.
Substitusi nilai ke persamaan , yaitu .
Jadi, penyelesaian sistem persamaan linear-kuadrat tersebut adalah dan .
(Jawaban D)
[collapse]
Baca Juga: Soal dan Pembahasan – Sistem Koordinat Kartesius
Soal Nomor 2
Himpunan penyelesaian dari SPLK adalah
A.
B.
C.
D.
E.
Pembahasan
Diketahui SPLK
Persamaan dapat ditulis menjadi . Substitusikan pada persamaan .
Jika , maka diperoleh .
Jika , maka diperoleh .
Jadi, HP SPLK tersebut adalah
(Jawaban A)
[collapse]
Soal Nomor 3
Misalkan penyelesaian SPLK adalah dan . Nilai
A. C. E.
B. D.
Pembahasan
Diketahui SPLK
Persamaan dapat ditulis menjadi . Substitusikan pada persamaan .
Jika , maka diperoleh .
Jika , maka diperoleh .
Jadi, penyelesaian SPLK tersebut adalah dan sehingga nilai Catatan: Karena yang ditanyakan adalah jumlah dari , maka masing-masing nilainya tidak perlu dipermasalahkan bila ditukar-tukar, sebab hasil penjumlahannya pasti sama.
(Jawaban C)
[collapse]
Soal Nomor 4
Titik koordinat yang termasuk penyelesaian dari sistem persamaan adalah
A. D.
B. E.
C.
Pembahasan
Pertama, cari titik potong dari grafik kedua persamaan tersebut.
Substitusi masing-masing dua nilai tersebut ke persamaan sehingga diperoleh
Jadi, titik potongnya adalah dan .
Titik potong adalah titik koordinat yang merupakan penyelesaian dari sistem persamaan tersebut.
(Jawaban B)
[collapse]
Soal Nomor 5
Penyelesaian dari sistem persamaan
adalah
A. dan
B. dan
C. dan
D. dan
E. dan
Pembahasan
Ubah persamaan menjadi
Substitusi persamaan pada persamaan . Kita peroleh
Substitusi nilai ke persamaan , yaitu .
Jadi, penyelesaian sistem persamaan linear-kuadrat tersebut adalah dan .
(Jawaban D)
[collapse]
Baca Juga: Soal dan Pembahasan – SPLTV
Soal Nomor 6
Himpunan penyelesaian SPLK adalah
A.
B.
C.
D.
E.
Pembahasan
Diketahui SPLK
Persamaan merupakan bagian kuadrat yang dapat difaktorkan sebagai berikut.
Dengan demikian, SPLK tersebut dapat dipecah menjadi dua SPLDV berikut.
SPLDV pertama:
dengan penyelesaian .
SPLDV kedua:
dengan penyelesaian .
Jadi, himpunan penyelesaian SPLK tersebut adalah
(Jawaban A)
[collapse]
Bagian Uraian
Soal Nomor 1
Carilah himpunan penyelesaian dari tiap SPLK berikut.
a.
b.
c.
d.
Pembahasan
Jawaban a)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
Dengan demikian, kita akan dapatkan nilai jika masing-masing nilai ini disubstitusi pada salah satu persamaan, misalnya .
Jadi, HP SPLK tersebut adalah
Jawaban b)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
Dengan demikian, kita akan dapatkan nilai jika masing-masing nilai ini disubstitusi pada salah satu persamaan, misalnya .
Jadi, HP SPLK tersebut adalah
Jawaban c)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
Dengan demikian, kita akan dapatkan nilai jika masing-masing nilai ini disubstitusi pada salah satu persamaan, misalnya .
Jadi, HP SPLK tersebut adalah
Jawaban d)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
Dengan demikian, kita akan dapatkan nilai jika masing-masing nilai ini disubstitusi pada salah satu persamaan, misalnya .
Jadi, HP SPLK tersebut adalah
[collapse]
Baca Juga: Soal dan Pembahasan – Soal Cerita (Aplikasi) SPLTV
Soal Nomor 2
Diketahui SPLK 2
- Tunjukkan bahwa sistem persamaan linear dan kuadrat itu tepat memiliki satu anggota dalam himpunan penyelesaiannya.
- Carilah himpunan penyelesaiannya itu.
Pembahasan
Jawaban a)
Diketahui
Persamaan dapat diubah menjadi .
Substitusikan persamaan ini ke persamaan sehingga diperoleh
Sistem tersebut memiliki tepat satu penyelesaian jika persamaan kuadrat di atas memiliki diskriminan yang nilainya .
(Terbukti)
Jawaban b)
Sebelumnya, kita peroleh persamaan kuadrat , yang dapat difaktorkan menjadi sehingga penyelesaiannya adalah .
Substitusi pada persamaan linearnya sehingga didapat
Jadi, penyelesaian SPLK tersebut adalah
[collapse]
Soal Nomor 3
Carilah nilai agar tiap SPLK berikut ini tepat mempunyai satu anggota dalam himpunan penyelesaiannya.
a.
b.
c.
d.
Pembahasan
Jawaban a)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan persamaan kuadrat di atas bernilai .
Jadi, nilai yang memenuhi adalah
Jawaban b)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan persamaan kuadrat di atas bernilai .
Jadi, nilai yang memenuhi adalah
Jawaban c)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan persamaan kuadrat di atas bernilai .
Jadi, nilai yang memenuhi adalah
Jawaban d)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan persamaan kuadrat di atas bernilai .
Jadi, nilai yang memenuhi adalah
[collapse]
Soal Nomor 4
Carilah batas-batas nilai agar setiap SPLK berikut ini sekurang-kurangnya memiliki satu anggota himpunan penyelesaian.
a.
b.
Pembahasan
Jawaban a)
Diketahui Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki setidaknya satu penyelesaian jika persamaan kuadrat di atas memiliki nilai diskriminan .
Dengan demikian, kita tuliskan
Jadi, batas nilai agar SPLK ini memiliki sekurang-kurangnya satu anggota himpunan penyelesaian adalah
Jawaban b)
Diketahui Persamaan dapat ditulis menjadi .
Substitusikan persamaan ini pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki setidaknya satu penyelesaian jika persamaan kuadrat di atas memiliki nilai diskriminan .
Dengan demikian, kita tuliskan
Jadi, batas nilai agar SPLK ini memiliki sekurang-kurangnya satu anggota himpunan penyelesaian adalah
[collapse]
Soal Nomor 5
Carilah nilai agar tiap SPLK berikut tepat mempunyai satu anggota dalam himpunan penyelesaiannya.
a.
b.
Pembahasan
Jawaban a)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki tepat satu penyelesaian apabila persamaan kuadrat di atas memiliki nilai diskriminan sama dengan . Kita peroleh
Jadi, nilai yang memuat SPLK tersebut memiliki tepat satu penyelesaian adalah atau .
Jawaban b)
Diketahui
Substitusikan persamaan pada persamaan sehingga diperoleh
SPLK tersebut akan memiliki tepat satu penyelesaian apabila persamaan kuadrat di atas memiliki nilai diskriminan sama dengan . Kita peroleh
Jadi, nilai yang memuat SPLK tersebut memiliki tepat satu penyelesaian adalah atau .
[collapse]
Soal Nomor 6
Misalkan adalah bilangan real yang bukan nol. Carilah himpunan penyelesaian dari SPLK berikut ini dengan menyatakannya dalam dan .
a.
b.
Pembahasan
Jawaban a)
Diketahui
Persamaan dapat ditulis kembali menjadi . Substitusikan pada persamaan .
Persamaan terakhir menunjukkan bahwa kita telah memperoleh
Masing-masing nilai ini disubstitusi pada persamaan . Kita akan memperoleh
Jadi, himpunan penyelesaian SPLK tersebut adalah Jawaban b)
Diketahui
Kedua ruas pada persamaan dikuadratkan, dan kita akan peroleh
Sekarang, persamaan dikurangi persamaan .
Dengan demikian, kita dapat tuliskan
Dengan demikian, didapat dua penyelesaian, yaitu atau .
Jadi, himpunan penyelesaian SPLK tersebut adalah
[collapse]
Soal Nomor 7
Tentukan himpunan penyelesaian SPLK berikut.
a.
b.
c.
Pembahasan
Jawaban a)
Diketahui SPLK
Persamaan disubstitusikan pada persamaan .
Jika , maka diperoleh .
Jika , maka diperoleh .
Jadi, HP SPLK tersebut adalah
Jawaban b)
Diketahui SPLK
Persamaan dapat ditulis menjadi . Substitusikan pada persamaan .
Jika , maka diperoleh .
Jika , maka diperoleh .
Jadi, HP SPLK tersebut adalah
Jawaban c)
Diketahui SPLK
Persamaan dapat ditulis menjadi . Substitusikan pada persamaan .
Jika , maka diperoleh .
Jika , maka diperoleh .
Jadi, HP SPLK tersebut adalah
[collapse]
Font judulnya, Font CoC yahh? :v
Lebih tepatnya, font SuperCell. Haha.
Alhamdulillah, sangat membantu