Soal dan Pembahasan – Kesebangunan dan Kekongruenan

     Berikut ini merupakan soal dan pembahasan mengenai kesebangunan dan kekongruenan yang dianjurkan untuk dipelajari oleh siswa tingkat SMP/Sederajat, terutama untuk menguatkan pemahaman konsep dan persiapan ulangan. Soal juga dapat diunduh dalam format PDF melalui tautan berikut: Download (PDF).

Baca: Soal dan Pembahasan- Teorema Pythagoras

Quote by George Bernard Shaw

Life isn’t about finding yourself. Life is about creating yourself.

Bagian Pilihan Ganda

Soal Nomor 1

Perhatikan gambar berikut.
Kekongruenan segitiga dalam trapesium$ABCD$ merupakan trapesium sama kaki. Banyak pasangan segitiga kongruen pada gambar tersebut adalah $\cdots \cdot$

A. $4$ pasang                C. $6$ pasang
B. $5$ pasang                D. $7$ pasang

Pembahasan

Perhatikan gambar berikut.



Dari gambar di atas, terdapat $5$ pasang segitiga yang kongruen.
(Jawaban B)

[collapse]

Soal Nomor 2

Dua segitiga pada gambar di bawah adalah kongruen.
Kekongruenan segitigaPasangan sisi yang sama panjang adalah $\cdots \cdot$

A. $AB$ dan $EC$
B. $AD$ dan $BE$
C. $AC$ dan $CD$
D. $BC$ dan $CD$

Pembahasan

Diketahui: $\triangle ABC \cong \triangle CDE.$
Pasangan sisi yang sama panjang adalah $AB = DE, BC = CE$, dan $AC = CD$.
(Jawaban C)

[collapse]

Soal Nomor 3

Perhatikan jajar genjang berikut.
Kekongruenan jajar genjangJajar genjang yang kongruen dengan jajar genjang di atas adalah $\cdots \cdot$

Pembahasan

Perhatikan bahwa jumlah dari besar sudut sepihak dalam jajar genjang adalah $180^{\circ}$. Dari gambar yang diberikan, besar salah satu sudut jajar genjang itu adalah $65^{\circ}$. Ini artinya, sudut lain yang sepihak dengannya memiliki besar $180^{\circ}-65^{\circ} = 115^{\circ}$. Berdasarkan opsi jawaban yang diberikan, hanya opsi D yang memenuhi kriteria ini (panjang sisinya juga sesuai/tepat sama). 
(Jawaban D)

[collapse]

Soal Nomor 4

Perhatikan gambar berikut.
Kekongruenan segitiga

Panjang sisi $BC$ adalah $\cdots \cdot$
A. $25$ cm                 C. $22$ cm
B. $24$ cm                 D. $20$ cm

Pembahasan

Berdasarkan prinsip kekongruenan, diperoleh:
$\begin{aligned} QR & = AC = 24~\text{cm}, \\ PR & = AB = 20~\text{cm}, \\ PQ & = BC = 25~\text{cm}. \end{aligned}$
Jadi, panjang sisi $BC$ adalah $\boxed{25~\text{cm}}$
(Jawaban A)

[collapse]

Soal Nomor 5

Pada gambar di bawah, segitiga $ABC$ kongruen dengan segitiga $DEF$. Panjang $EF$ adalah $\cdots \cdot$
Kekongruenan segitiga

A. $5$ cm                      C. $6,5$ cm
B. $6$ cm                     D. $7$ cm

Pembahasan

Diketahui: $\triangle ABC \cong \triangle DEF.$
Pasangan sisi yang sama panjang adalah $AB = DF = 5~\text{cm},$ $AC = DE = 6~\text{cm},$ dan $BC = EF =7~\text{cm}.$
Jadi, panjang $EF$ adalah $\boxed{7~\text{cm}}$
(Jawaban D)

[collapse]

Soal Nomor 6

Pada $\triangle ABC$, diketahui besar $\angle A=60^{\circ}$ dan besar $\angle B=55^{\circ}$, sedangkan pada $\angle DEF$ diketahui besar $\angle D=60^{\circ}$ dan besar $\angle E=65^{\circ}.$ Jika $\triangle ABC$ dan $\triangle DEF$ kongruen, maka dari pernyataan berikut:
1. $AC = DE$
2. $AB = FE$
3. $BC = FE$
4. $BC = DE$

yang benar adalah $\cdots \cdot$
A. $1$ dan $3$                 C. $1$ dan $4$
B. $2$ dan $3$                 D. $3$ dan $4$

Pembahasan

Perhatikan sketsa gambar kedua segitiga berikut.

Dari gambar di atas, kita peroleh $AB = DF, AC = DE$, dan $BC = FE$. Pernyataan yang benar ditandai oleh nomor $1$ dan $3$.
(Jawaban A)
 

[collapse]

Soal Nomor 7

Diketahui $\triangle ABC$ dan $\triangle KLM$ dengan $AB=LM,BC=KL,$ dan $AC=KM.$ Pasangan sudut yang sama besar adalah $\cdots \cdot$
A. $\angle A = \angle K, \angle B = \angle L, \angle C = \angle M$
B. $\angle A = \angle L, \angle B = \angle M, \angle C = \angle K$
C. $\angle A = \angle K, \angle B = \angle M, \angle C = \angle L$
D. $\angle A = \angle M, \angle B = \angle L, \angle C = \angle K$

Pembahasan

Perhatikan sketsa gambar berikut.

Karena $\triangle ABC$ dan $\triangle KLM$ kongruen, kita peroleh $\angle A = \angle M, \angle B = \angle L$, dan $\angle C = \angle K.$
(Jawaban D)

[collapse]

Soal Nomor 8

Perhatikan gambar berikut.
Kekongruenan segitigaSegitiga $ABC$ kongruen dengan segitiga $POT$. Pasangan sudut yang sama besar adalah $\cdots \cdot$

A. $\angle BAC$ dan $\angle POT$
B. $\angle BAC$ dan $\angle PTO$
C. $\angle ABC$ dan $\angle POT$
D. $\angle ABC$ dan $\angle PTO$

Pembahasan

Diketahui: $ABC \cong POT.$ Kedua segitiga memiliki sisi yang sama panjang, yaitu $AB = PO.$ $AC = PT,$ dan $BC = OT$ dan sudut yang sama besar, yaitu:
$\begin{aligned} \angle BAC & = \angle OPT,  \\ \angle ABC & = \angle POT,  \\ \angle ACB & = \angle PTO. \end{aligned}$
(Jawaban C)

[collapse]

Soal Nomor 9

Perhatikan gambar berikut.
Segitiga $ABD$ kongruen dengan segitiga $BAC$ karena memenuhi syarat $\cdots \cdot$

A. sisi, sudut, sisi
B. sisi, sisi, sisi
C. sisi, sisi, sudut
D. sudut, sudut, sisi

Pembahasan

Kedua segitiga memiliki satu pasang sudut yang sama besar, yaitu $\angle BAD = \angle ABC$. Sisi yang mengapit sudut tersebut juga sama panjang, yaitu sisi $AD = BC$ dan sisi $AB$ berimpit. Jadi, kedua segitiga kongruen karena memenuhi syarat: sisi, sudut, sisi (posisi “sudut” di tengah karena sudut yang sama besar itu diapit oleh sisi yang sama panjang).
(Jawaban A)

[collapse]

Soal Nomor 10

Perhatikan gambar berikut.
Kesebangunan segitiga siku-sikuPerbandingan sisi pada $\triangle ABC$ dan $\triangle BCD$ yang sebangun adalah $\cdots \cdot$

A. $\dfrac{AB}{BD} = \dfrac{BC}{CD} = \dfrac{AC}{BC}$
B. $\dfrac{AD}{BD} = \dfrac{AB}{CD} = \dfrac{BD}{BC}$
C. $\dfrac{AB}{AD} = \dfrac{BC}{AB} = \dfrac{AC}{BD}$
D. $\dfrac{AB}{AD} = \dfrac{BC}{AB} = \dfrac{AC}{BC}$

Pembahasan

Diketahui $\triangle ABC \sim BCD$ sehingga $AB \sim BD, BC \sim CD$, dan $AC \sim BC.$ Dengan demikian, berlaku perbandingan $\dfrac{AB}{BD} = \dfrac{BC}{CD} = \dfrac{AC}{BC}.$
(Jawaban A)

[collapse]

Soal Nomor 11

Perhatikan gambar berikut.
Kesebangunan segitiga

Jika $DE : AB = 2 \colon 3$, maka panjang $BD$ adalah $\cdots \cdot$
A. $2$ cm                     C. $4$ cm
B. $3$ cm                     D. $5$ cm

Pembahasan

Diketahui: $DE = 8~\text{cm}; CE = 10~\text{cm}.$
Karena $DE : AB = 2 : 3$, maka
$AB = \dfrac{3}{2} \times 8 = 12~\text{cm}.$
Pada segitiga siku-siku $CDE$, berlaku Teorema Pythagoras.
$\begin{aligned} CD & = \sqrt{CE^2- DE^2} \\ & = \sqrt{10^2-8^2} = \sqrt{36} = 6~\text{cm} \end{aligned}$
$\triangle CDE$ dan $\triangle ABC$ sebangun dengan $CD \sim CB$ dan $DE \sim BA$ sehingga
$\begin{aligned} \dfrac{CD} {CB} & = \dfrac{DE} {BA} \\ \dfrac{6}{6 + BD} & = \dfrac{8}{12} \\ 6 + BD & = \dfrac{6 \times 12}{8} = 9 \\ BD & = 9- 6 = 3~\text{cm} \end{aligned}$
Jadi, panjang $BD$ adalah $\boxed{3~\text{cm}}$
(Jawaban B)

[collapse]

Soal Nomor 12

Perhatikan gambar berikut.
Kesebangunan trapesium

Trapesium $ABCD$ sebangun dengan trapesium $KLMN$. Panjang $MN$ adalah $\cdots \cdot$
A. $15$ cm                C. $20$ cm
B. $18$ cm                D. $24$ cm

Pembahasan

Karena trapesium $KLMN \sim ABCD$, maka berlaku $MN \sim AD$ dan $KL \sim BC$ sehingga
$\begin{aligned} \dfrac{MN} {AD} & = \dfrac{KL} {BC} \\ \dfrac{MN} {24} & = \dfrac{15}{18} \\ MN & = \dfrac{15 \times 24}{18} = 20~\text{cm} \end{aligned}$
Jadi, panjang $MN$ adalah $\boxed{20~\text{cm}}$
(Jawaban C)

[collapse]

Soal Nomor 13

Perhatikan gambar berikut.
Kesebangunan segitiga

Segitiga ABC siku-siku sama kaki dengan panjang $AB = BC = 3$ cm. $AD$ adalah garis bagi sudut $A$. Panjang $BD$ adalah $\cdots \cdot$
A. $(3-3\sqrt{2})~\text{cm}$            C. $3~\text{cm}$
B. $(3\sqrt{2}-3)~\text{cm}$            D. $3\sqrt{2}~\text{cm}$

Pembahasan

Segitiga $ABD$ dan segitiga $ADE$ kongruen menurut syarat: sudut, sudut, sisi, sehingga berlaku $AB = AE = 3~\text{cm}; BD = DE$. Karena segitiga $ABC$ siku-siku, maka berlaku Teorema Pythagoras, yaitu
$\begin{aligned} AC & = \sqrt{AB^2 + BC^2} \\ & = \sqrt{3^2 + 3^2} = 3\sqrt{2}~\text{cm} \end{aligned}$
Dengan demikian, $EC = AC- AE = (3\sqrt{2}- 3)~\text{cm}.$
Karena $ECD$ segitiga sama kaki dengan $EC = DE$, dan juga karena $DE = BD$, maka panjang $BD$ adalah $\boxed{(3\sqrt{2}- 3)~\text{cm}}$
(Jawaban B)

[collapse]

Soal Nomor 14

Pada gambar di bawah, diketahui panjang $AB$ = 9 cm dan $AD$ = 5 cm. Panjang $BC$ adalah $\cdots \cdot$
Kesebangunan segitiga siku-sikuA. $4~\text{cm}$                   C. $6~\text{cm}$

B. $5~\text{cm}$                   D. $8~\text{cm}$

Pembahasan

Segitiga $ABC$ dan segitiga $BCD$ sebangun.
Diketahui: $AB = 9~\text{cm}, AD = 5~\text{cm}.$
Panjang $DB = AB- AD = 9-5 = 4~\text{cm}.$
Untuk itu, berlaku
$\begin{aligned} \dfrac{AB}{BC} & = \dfrac{BC}{DB} \Rightarrow \dfrac{9}{BC} = \dfrac{BC}{4} \\ BC^2 & = 9 \times 4 \Leftrightarrow BC = 6~\text{cm} \end{aligned}$
Jadi, panjang $BC$ adalah $\boxed{6~\text{cm}}$
(Jawaban C)

[collapse]

Soal Nomor 15

Gambar dua trapesium berikut adalah sebangun.
Kesebangunan trapesiumLuas trapesium $B$ adalah $\cdots \cdot$

A. $129~\text{cm}^2$               C. $192~\text{cm}^2$
B. $162~\text{cm}^2$               D. $324~\text{cm}^2$

Pembahasan

Perhatikan gambar.
Tinggi trapesium $A$ dapat dihitung dengan menerapkan rumus Pythagoras, yaitu
$t_A = \sqrt{10^2-6^2} = \sqrt{64} = 8~\text{cm}$
Pada trapesium $B$, sisi atas dapat ditentukan dengan perbandingan, yaitu
$\dfrac{12}{18} = \dfrac{6}{x} \Leftrightarrow x = \dfrac{6 \times 18}{12} = 9~\text{cm}$
Tinggi trapesium $B$ juga dapat ditentukan dengan perbandingan.
$\dfrac{12}{18} = \dfrac{8}{t_B} \Leftrightarrow t_B = \dfrac{18 \times 8}{12} = 12~\text{cm}$
Dengan demikian, luas trapesium $B$ adalah
$\begin{aligned} L_B & = \dfrac{(18 + 9)\times \cancelto{6}{12}}{\cancel{2}} \\ & = 27 \times 6 = 162~\text{cm}^2 \end{aligned}$
(Jawaban B)

[collapse]

Soal Nomor 16

Perhatikan gambar berikut.
Kesebangunan segitigaDiketahui $AB = BC = CD$. Panjang $BF$ adalah $\cdots \cdot$

A. $17~\text{cm}$                 C. $15~\text{cm}$
B. $16~\text{cm}$                 D. $14~\text{cm}$

Pembahasan

Posisikan titik $P$ seperti pada gambar di mana $BP = CD = 18~\text{cm}$ dan $BC = PD = 18~\text{cm}$.
Perhatikan bahwa segitiga $APE$ dan segitiga $ABF$ sebangun sehingga berlaku

$\begin{aligned} \dfrac{AB} {AP} & = \dfrac{BF} {PE} \\ \dfrac{18}{18+18} & = \dfrac{BF} {18+12} \\ \dfrac12 & = \dfrac{BF} {30} \\ BF & = 15 \end{aligned}$
Jadi, panjang $BF$ adalah $\boxed{15~\text{cm}}$
(Jawaban C)

[collapse]

Soal Nomor 17

Perhatikan gambar berikut.
Jika panjang $AD = 3~\text{cm}$, maka nilai $x$ yang mewakili panjang $CD$ sama dengan $\cdots \cdot$

A. $\dfrac18~\text{cm}$                      C. $\dfrac58~\text{cm}$
B. $\dfrac38~\text{cm}$                      D. $\dfrac78~\text{cm}$

Pembahasan

Dari gambar di atas, dapat kita buat garis $HB$ yang sejajar dengan garis $AF$ seperti berikut. Perhatikan bahwa panjang $GH$ sama dengan panjang $FD$, yaitu $5~\text{cm}$, sedangkan panjang $GB$ sama dengan panjang $AD$, yaitu $3~\text{cm}$ sehingga panjang $HB$ adalah $5+3=8~\text{cm}$.
Segitiga $BCG$ dan segitiga $BEH$ merupakan segitiga yang sebangun sehingga berlaku perbandingan alas-alas dan sisi kanan-sisi kanan. 
$\begin{aligned} \dfrac{CG}{EH} & = \dfrac{GB}{HB} \\ \dfrac{x+5}{10+5} & = \dfrac{3}{8} \\ \dfrac{x+5}{15} & = \dfrac{3}{8} \\ 8(x+5) & = 15(3) \\ 8x+40 & = 45 \\ 8x & = 5 \\ x & = \dfrac58 \end{aligned}$
Jadi, nilai $\boxed{x = \dfrac58~\text{cm}}$
(Jawaban C)

[collapse]

Soal Nomor 18

Perhatikan gambar berikut.
Kesebangunan pada bangun datar trapesium$E$ dan $F$ adalah titik tengah $AC$ dan $BD$. Panjang $EF$ adalah $\cdots \cdot$

A. $3$ cm                  C. $6$ cm
B. $4$ cm                  D. $8$ cm

Pembahasan

Gunakan perhitungan skematik berikut.
Misalkan panjang $AE = EC = x$ sehingga

$\begin{aligned} EF & = \dfrac{AB \times EC- CD \times AE} {AE + EC} \\ & = \dfrac{18x- 12x} {x + x} \\ & = \dfrac{6x} {2x} = 3~\text{cm} \end{aligned}$
Jadi, panjang $\boxed{EF = 3~\text{cm}}$
(Jawaban A)

[collapse]

Soal Nomor 19

Perhatikan gambar berikut.
Kesebangunan segitigaJika panjang $LM = 30~\text{cm}$ dan $LK = 24~\text{cm}$, maka panjang $KN$ adalah $\cdots \cdot$
A. $4~\text{cm}$                     C. $8~\text{cm}$
B. $6~\text{cm}$                     D. $9~\text{cm}$

Pembahasan

Karena $\angle KNP$ dan $\angle PNL$ berpelurus, maka
$\angle PNL = 180^{\circ}- \angle KNP$ $= 180^{\circ}- 105^{\circ} = 75^{\circ}.$
Perhatikan gambar segitiga $MLK$ dan $PLN$ berikut.
Kedua tersebut saling sebangun dengan perbandingan sisi yang bersesuaian, yaitu $MK \sim NP, ML \sim NL$, dan $KL \sim PL$. 
Misalkan panjang $KN = x~\text{cm}$, maka $NL = (24-x)~\text{cm}$.
Dengan prinsip kesebangunan, diperoleh
$\begin{aligned} \dfrac{KM}{NP} & = \dfrac{ML}{NL} \Rightarrow \dfrac{\cancel{15}}{10} = \dfrac{\cancelto{2}{30}}{24- x} \\ 24- x & = 20 \\ x & = 4 \end{aligned}$
Jadi, panjang $KN$ adalah $\boxed{4~\text{cm}}$ 
(Jawaban A)

[collapse]
 

Soal Nomor 20

Gambar di bawah menunjukkan dua buah persegi panjang yang saling sebangun. Nilai $x$ yang memenuhi adalah $\cdots \cdot$
Dua persegi panjang yang saling sebangunA. $4,5$                     C. $7,0$ 

B. $6,0$                     D. $7,5$ 

Pembahasan

Dari gambar yang diberikan, panjang dari persegi panjang pertama sebanding dengan lebar persegi panjang kedua, dan sebaliknya. Diketahui bahwa lebar persegi panjang pertama sama dengan lebar persegi panjang kedua, yaitu $x$ cm. Berdasarkan prinsip kesebangunan, kita peroleh
$\begin{aligned} \dfrac{x}{9} & = \dfrac{4}{x} \\ x^2 & = 4 \times 9 = 36 \\ x & = 6 \end{aligned}$
Jadi, nilai $x$ yang memenuhi adalah $\boxed{6,0}$
(Jawaban B)

[collapse]

Soal Nomor 21

Ali mempunyai selembar karton berbentuk persegi panjang dengan panjang $12$ cm dan lebar $16$ cm. Misalkan terdapat beberapa tanah berbentuk:

  1. Persegi panjang berukuran $36~\text{m} \times 27~\text{m}$
  2. Persegi panjang berukuran $6~\text{m}~\times 4,5~\text{m}$  
  3. Persegi panjang berukuran $48~\text{m} \times 24~\text{m}$
  4. Persegi panjang berukuran $24~\text{m} \times 18~\text{m}$

Bidang tanah yang sebangun dengan karton milik Ali adalah $\cdots \cdot$
A. I dan III                          C. II dan III
B. I, II, dan III                   D. I, II, dan IV

Pembahasan

Perbandingan panjang dan lebar karton Ali adalah $p : l = 12~\text{cm} : 16~\text{cm} = 3 : 4$.
Persegi panjang lain dapat sebangun dengan karton tersebut jika memiliki nilai perbandingan yang sama: $4 : 3$ atau $3 : 4.$
Cek I:
Perbandingan panjang dan lebarnya adalah
$p : l = 36~\text{m} : 27~\text{m} = 4 : 3.$
Bidang tanah ini sebangun dengan karton Ali.
Cek II:
Perbandingan panjang dan lebarnya adalah
$p : l = 6~\text{m} : 4,5~\text{m} = 4 : 3.$
Bidang tanah ini sebangun dengan karton Ali.
Cek III:
Perbandingan panjang dan lebarnya adalah
$p : l = 48~\text{m} : 24~\text{m} = 2 : 1.$
Bidang tanah ini tidak sebangun dengan karton Ali.
Cek IV:
Perbandingan panjang dan lebarnya adalah
$p : l = 24~\text{m} : 18~\text{m} = 4 : 3.$
Bidang tanah ini sebangun dengan karton Ali.
Jadi, bidang tanah yang sebangun adalah I, II, dan IV.
(Jawaban D)

[collapse]

Soal Nomor 22

Sebuah gedung mempunyai panjang bayangan $56$ m di atas tanah mendatar. Pada saat yang sama, seorang siswa dengan tinggi $1,5$ m mempunyai bayangan $3,5$ m. Tinggi gedung sebenarnya adalah $\cdots \cdot$
A. $18$ m                     C. $22$ m
B. $21$ m                     D. $24$ m

Pembahasan

Misalkan tinggi gedung sebenarnya adalah $x$.
Dengan menggunakan konsep kesebangunan, diperoleh
$$\begin{aligned} \dfrac{\text{Tinggi Siswa}} {\text{Tinggi Gedung}} & = \dfrac{\text{Panjang Bayangan Siswa}} {\text{Panjang Bayangan Gedung}} \\ \dfrac{1,5}{x} & = \dfrac{3,5}{56} \\ x & = \dfrac{56 \times 1,5}{3,5} = 24~\text{m} \end{aligned}$$Jadi, tinggi gedung itu adalah $\boxed{24~\text{m}}$
(Jawaban D)

[collapse]

Soal Nomor 23

Tiang setinggi $2$ meter mempunyai panjang bayangan $150$ cm. Jika panjang bayangan sebuah gedung $24$ meter, maka tinggi gedung tersebut adalah $\cdots \cdot$
A. $32,0$ m                 C. $20,5$ m
B. $27,5$ m                 D. $18,0$ m

Pembahasan

Misalkan tinggi gedung adalah $x$.
Panjang bayangan tiang diketahui $150~\text{cm} = 1,5~\text{m}.$
Dengan menggunakan konsep kesebangunan, diperoleh
$$\begin{aligned} \dfrac{\text{Tinggi Tiang}} {\text{Tinggi Gedung}} & = \dfrac{\text{Panjang Bayangan Tiang}} {\text{Panjang Bayangan Gedung}} \\ \dfrac{2}{x} & = \dfrac{1,5}{24} \\ x & = \dfrac{24 \times 2}{1,5} = 32~\text{m} \end{aligned}$$Jadi, tinggi gedung itu adalah $\boxed{32,0~\text{m}}$
(Jawaban A)

[collapse]

Soal Nomor 24

Sebuah foto ditempelkan pada karton seperti pada gambar. Di sebelah kiri dan kanan foto masih terdapat bagian karton masing-masing selebar $3$ cm, sedangkan bagian atas dan bawah karton belum diketahui ukurannya. Diketahui bahwa foto dan karton sebangun.
Kesebangunan pada bingkai fotoLuas karton yang tidak tertutup foto adalah $\cdots~\text{cm}^2$

A. $288$                       C. $432$
B. $324$                       D. $516$

Pembahasan

Perhatikan sketsa gambar berikut.
Dalam sketsa gambar di atas, dimisalkan $x$ sebagai lebar bagian atas dan bawah karton terhadap foto. Karena karton dan foto sebangun, maka berlaku

$\begin{aligned} \dfrac{30}{40} & = \dfrac{24}{40-2x} \\ \dfrac34 & = \dfrac{24}{40-2x} \\ 3(40-2x) & = 4(24) \\ 120- 6x & = 96 \\ 6x & = 24 \\ x & = 4 \end{aligned}$
Lebar foto = $40-2x=40-2(4)$ $=32~\text{cm}.$
Luas karton yang tidak tertutup foto adalah luas karton dikurangi luas foto, yaitu
$\begin{aligned} L & = L_{\text{karton}}- L_{\text{foto}} \\ & = (30 \times 40)- (24 \times 32) \\ & = 1.200- 768 = 432~\text{cm}^2 \end{aligned}$
(Jawaban C) 

[collapse]

Soal Nomor 25

Sebuah foto berukuran alas $16~\text{cm}$ dan tinggi $24~\text{cm}$ ditempel pada sebuah karton berbentuk persegi panjang. Jika foto dan karton sebangun dan lebar karton di sebelah kiri, kanan, dan atas foto $2~\text{cm}$, lebar karton di bagian bawah foto adalah $\cdots \cdot$
A. $6~\text{cm}$                  C. $3~\text{cm}$
B. $4~\text{cm}$                  D. $2~\text{cm}$

Pembahasan

Perhatikan sketsa gambar berikut.
Alas karton = $16 + 2 + 2 = 20~\text{cm}$ dan tinggi karton = $24 + 2 + x$ $= (26 + x)~\text{cm}.$ Karena foto dan karton sebangun, maka berlaku
$\begin{aligned} \dfrac{16}{20} & = \dfrac{24}{26+x} \Leftrightarrow \dfrac45 = \dfrac{24}{26+x} \\ 26 + x & = \dfrac{5 \times \cancelto{6}{24}}{\cancel{4}} = 30 \\ x & = 30- 26 = 4 \end{aligned}$
Jadi, lebar karton di bagian bawah foto adalah $\boxed{4~\text{cm}}$
(Jawaban B)

[collapse]

Soal Nomor 26

Sutan ingin mengetahui lebar sungai. Di seberang sungai terdapat sebuah pohon. Untuk itu, dia menancapkan tongkat pada posisi $A, B, C$, dan $D$ dengan jarak seperti gambar.
Kesebangunan segitiga pada aplikasi mengukur lebar sungaiSutan ingin mengukur lebar sungai dari tongkat $D$ sampai pohon. Berapa lebar sungai tersebut?

A. $11$ m                  C. $15$ m
B. $12$ m                  D. $16$ m

Pembahasan

Misalkan titik pada pohon itu kita sebut sebagai titik $E$.
Segitiga $DCE$ dan $ABE$ sebangun dan kita akan mencari panjang $DE$ yang merupakan lebar sungai. Karena $AB \sim DC$ dan $AE \sim DE$, maka berlaku
$\begin{aligned} \dfrac{AB}{DC} & = \dfrac{AE}{DE} \Rightarrow \dfrac{\cancelto{4}{8}}{\cancelto{3}{6}} = \dfrac{DE + 4}{DE} \\ 4DE & = 3(DE + 4) \\ 4DE & = 3DE + 12 \\ DE&  = 12~\text{m} \end{aligned}$
Jadi, lebar sungai tersebut adalah $\boxed{12~\text{m}}$ 
(Jawaban B)

[collapse]

Soal Nomor 27

Perhatikan gambar berikut.
Kesebangunan segitiga pada aplikasi mengukur lebar sungai

Dua siswa bernama $A$ dan $B$ akan mengukur jarak dua pohon $P$ dan $Q$ di seberang sungai. Mereka membuat patok pada titik $C, E$, dan $D$ seperti gambar. Jarak pohon $P$ dan $Q$ adalah $\cdots \cdot$
A. $18$ m                    C. $10$ m
B. $12$ m                    D. $9$ m

Pembahasan

Misalkan lebar sungai $= CQ = x.$
Perhatikan bahwa segitiga $ABQ$ sebangun dengan segitiga $ECQ$ sehingga berlaku
$\begin{aligned} \dfrac{AB}{EC} & = \dfrac{BQ}{CQ} \Rightarrow \dfrac43 = \dfrac{6 + x}{x} \\ 4x & = 3(6 + x) \\ 4x & = 18 + 3x \\ x & = 18 \end{aligned}$
Sekarang, perhatikan bahwa segitiga $ECB$ sebangun dengan segitiga $PQB$ sehingga berlaku
$\begin{aligned} \dfrac{PQ}{EC} & = \dfrac{QB}{CB} \Rightarrow \dfrac{PQ}{3} = \dfrac{18 + 6}{6} \\ \dfrac{PQ}{3} & = 4 \\ PQ & = 12~\text{m} \end{aligned}$
Jadi, jarak kedua pohon itu adalah $\boxed{12~\text{m}}$
(Jawaban B)

[collapse]

Soal Nomor 28

Perhatikan gambar kerucut berikut.
Kesebangunan segitiga pada kerucut

Keliling alas kerucut yang kecil adalah $\cdots \cdot$
A. $\dfrac{32}{5}\pi~\text{cm}$               C. $\dfrac{36}{5}\pi~\text{cm}$
B. $\dfrac{34}{5}\pi~\text{cm}$               D. $\dfrac{38}{5}\pi~\text{cm}$

Pembahasan

Perhatikan sketsa gambar berikut.
Misalkan $x$ adalah panjang $DE$ (diameter alas kerucut kecil).

Dengan menggunakan konsep kesebangunan segitiga, diperoleh
$\begin{aligned} \dfrac{AE}{AC} & = \dfrac{DE}{BC} \\ \dfrac{\cancelto{4}{12}}{\cancelto{5}{15}} & = \dfrac{x}{9} \\ x & = \dfrac{4 \times 9}{5} = \dfrac{36}{5} \end{aligned}$
Dengan demikian, keliling alas kerucut kecil adalah
$\begin{aligned} k & = \pi \times d \\ & = \pi \times \dfrac{36}{5} = \dfrac{36}{5}\pi~\text{cm}. \end{aligned}$
(Jawaban C)

[collapse]

Soal Nomor 29

Segi empat $ABCD$ adalah trapesium dengan sisi sejajar $BC$ dan $AD$ serta $AB$ tegak lurus $AD$. Diketahui bahwa panjang $BC = 10$, $AD = 15$, dan $AB = 12$. Titik $E$ adalah titik potong perpanjangan garis $AC$ dan garis yang melalui $D$ serta tegak lurus dengan $AD$ seperti tampak pada gambar. Luas segitiga $CDE$ adalah $\cdots \cdot$
A. $45$                      C. $75$                    
B. $60$                      D. $90$

Pembahasan

Tarik garis dari titik $C$ sehingga tegak lurus dengan garis $DE$. Misalkan titik potongnya diberi nama titik $F$ seperti tampak pada gambar di bawah.
Dari sini, diketahui bahwa panjang $DF = AB = 12$ dan panjang $CF = AD -BC = 15-10 = 5$. Perhatikan bahwa segitiga siku-siku $ADE$ dan segitiga siku-siku $CFE$ merupakan dua segitiga yang saling sebangun sehingga berlaku
$\begin{aligned} \dfrac{AD}{CF} & = \dfrac{DE}{FE} \\ \dfrac{15}{5} & = \dfrac{12 + FE}{FE} \\ 3 & = \dfrac{12 + FE}{FE} \\ 3FE & = 12 + FE \\ 2FE & = 12 \\ FE & = 6 \end{aligned}$
Akibatnya, $DE = 12 + 6 = 18$.
Luas segitiga $CDE$ dinyatakan oleh
$\begin{aligned} L_{\triangle CDE} & = \dfrac{DE \times CF}{2} \\ & = \dfrac{\cancelto{9}{18} \times 5}{\cancel{2}} = 45 \end{aligned}$
Jadi, luas segitiga $CDE$ adalah $\boxed{45}$
(Jawaban A)

[collapse]

Soal Nomor 30

Diketahui setengah lingkaran di bawah ini dengan $AB$ sebagai diameter dan $O$ titik pusat lingkaran.
Jika $AC = 12$ dan $CP = 9$, maka luas segitiga $CPO$ adalah $\cdots \cdot$

A. $15$                          C. $21$
B. $18$                          D. $27$

Pembahasan

Misalkan $D$ terletak pada $BC$ sehingga $OD \perp BC$.
Sudut $C$ menghadap diameter lingkaran sehingga besarnya $90^{\circ}$. Misalkan juga $AO = OB = r$ dan $OD = t$.
Segitiga siku-siku $ODB$ dan $ACB$ sebangun sehingga

$\begin{aligned} \dfrac{OD}{OB} & = \dfrac{AC}{AB} \\ \dfrac{t}{\cancel{r}} & = \dfrac{12}{2\cancel{r}} \\ t & = 6 \end{aligned}$
Dengan demikian, luas segitiga $CPO$ adalah
$\begin{aligned} L_{\triangle CPO} & = \dfrac12 \times OD \times CP \\ & = \dfrac12 \times 6 \times 9 = 27 \end{aligned}$
Jadi, luas segitiga $COP$ adalah $\boxed{27}$
(Jawaban D)

[collapse]

Soal Nomor 31

Pada gambar di bawah, luas lingkaran kecil = $a^2$ dan luas lingkaran besar = $b^2$.
Luas lingkaran tengah adalah $\cdots \cdot$

A. $\dfrac14(a+b)^2$                      C. $\dfrac{a^4+b^4}{ab}$
B. $\dfrac12(a^2+b^2)$                     D. $ab$

Pembahasan

Misalkan panjang jari-jari lingkaran kecil, tengah, dan besar berturut-turut adalah $r, x$, dan $R$. Tarik garis lurus yang melalui ketiga pusat lingkaran seperti berikut.
Sekarang dapat dibuat perbandingan berdasarkan kesebangunan segitiga $ABC$ dan $ADE$.

$$\begin{aligned} \dfrac{x-r}{x+r} & = \dfrac{R-r}{r + 2x + R} \\ (x-r)(r+2x+R) & = (x+r)(R-r) \\ rx + 2x^2 + Rx-r^2-2rx-rR & = Rx-rx+rR-r^2 \\ 2x^2 & = 2rR \\ x^2 & = rR \end{aligned}$$Karena luas lingkaran kecil dan besar masing-masing adalah $a^2$ dan $b^2$ sehingga
$$\begin{aligned} a^2 & = \pi r^2 \Leftrightarrow r^2 = \dfrac{a^2}{\pi} \Leftrightarrow r = \dfrac{a}{\sqrt{\pi}} && (\cdots 1) \\ b^2 & = \pi R^2 \Leftrightarrow R^2 = \dfrac{b^2}{\pi} \Leftrightarrow R = \dfrac{b}{\sqrt{\pi}} && (\cdots 2) \end{aligned}$$Dengan demikian, diperoleh luas lingkaran tengah, yaitu
$$\begin{aligned} L_T & = \pi x^2 \\ & = \pi (rR) \\ & = \pi \cdot \dfrac{a}{\sqrt{\pi}} \cdot \dfrac{b}{\sqrt{\pi}} \\ & = \cancel{\pi} \cdot \dfrac{ab}{\cancel{\pi}} \\ & = ab \end{aligned}$$Jadi, luas lingkaran tengah adalah $\boxed{ab}$
(Jawaban D)

[collapse]

Soal Nomor 32

Perhatikan gambar lingkaran dan dua segitiga di dalamnya.
Nilai $\boxed{m+n}$ adalah $\cdots \cdot$

A. $18~\text{cm}$                    C. $30~\text{cm}$
B. $24~\text{cm}$                    D. $33~\text{cm}$

Pembahasan

Perhatikan bahwa $\angle TSR$ dan $\angle TPQ$ merupakan sudut keliling yang menghadap busur yang sama sehingga $\angle TSR = \angle TPQ.$
Perhatikan juga bahwa $\angle SRT$ dan $\angle PRQ$ saling berseberangan sehingga besarnya sama. Karena ada dua sudut yang sama besar, maka ini cukup untuk mengatakan bahwa $\triangle SRT$ dan $\triangle PRQ$ sebangun.
Dengan demikian, berlaku
$$\begin{aligned} \dfrac{TR}{QR} & = \dfrac{SR}{PR} = \dfrac{ST}{PQ} \\ \dfrac{18}{36} & = \dfrac{m}{26} = \dfrac{n}{40} \\ \dfrac12 & = \dfrac{m}{26} = \dfrac{n}{40} \end{aligned}$$Sesuai persamaan di atas, diperoleh $m = 13$ dan $n = 20.$
Jadi, nilai $\boxed{m+n=13+20=33}$
(Jawaban D)

[collapse]

Soal Nomor 33

Dua buah benda dengan bentuk yang sama, tetapi panjangnya berbeda, diposisikan berdiri di depan dinding pembatas seperti tampak pada gambar.
Cahaya disorot dari depan sehingga terbentuk bayangan. Tinggi benda dan panjang bayangan tercantum pada gambar. Nilai $t$ adalah $\cdots \cdot$

A. $6$                          C. $10$
B. $8$                          D. $12$

Pembahasan

Panjang bayangan pada dinding pembatas akan menambah panjang benda (nilai $t$) secara langsung.
Misalkan $x$ adalah tinggi benda ketika bayangan “benda yang panjang” tidak sampai menyentuh dinding di belakangnya.
Menurut prinsip kesebangunan, kita akan peroleh
$$\begin{aligned} \dfrac{x}{6} & = \dfrac23 \\ x & = \dfrac23 \times 6 = 4. \end{aligned}$$Dengan demikian, nilai $t$ adalah $\boxed{x+4=4+4=8}$
(Jawaban B)

[collapse]

Soal Nomor 34 (IOS 2021 Tingkat SMA  – POSI)

Titik $A, B, C, D, E,$ dan $F$ terletak pada ruas garis $AF$ sehingga membaginya menjadi lima segmen yang panjangnya sama, yaitu $1.$ Titik $G$ tidak berada pada ruas garis $AF.$ Titik $H$ terletak pada ruas garis $GD,$ sedangkan titik $J$ terletak pada ruas garis $GF.$ Diketahui juga bahwa $GA, HC,$ dan $JE$ sejajar. Hasil dari $\dfrac{HC}{JE}$ adalah $\cdots \cdot$

A. $\dfrac54$                          D. $\dfrac53$
B. $\dfrac43$                          E. $2$
C. $\dfrac32$

Pembahasan

Diketahui:
$$\begin{aligned} AD & = 1 + 1 + 1 = 3 \\ CD & = 1 \\ AF & = 1 +1+1+1+1 = 5 \\ EF & = 1 \end{aligned}$$Perhatikan bahwa $\triangle ADG$ dan $\triangle CDH$ sebangun karena ketiga sudut yang bersesuaian sama besar, yakni $\angle ADG = \angle CDH,$ $\angle DCH = \angle DAG,$ dan berakibat sudut lainnya juga besarnya sama. Oleh karena itu, berlaku perbandingan berikut.
$$\begin{aligned} \dfrac{AD}{AG} & = \dfrac{CD}{HC} \\ \dfrac{3}{AG} & = \dfrac{1}{HC} && (\cdots 1) \end{aligned}$$Segitiga $AFG$ dan $EFJ$ juga sebangun dengan prinsip yang sama seperti di atas. Oleh karena itu, berlaku perbandingan berikut.
$$\begin{aligned} \dfrac{AF}{AG} & = \dfrac{EF}{JE} \\ \dfrac{5}{AG} & = \dfrac{1}{JE} \\ \dfrac{AG}{5} & = JE && (\cdots 2) \end{aligned}$$Dengan mengalikan kedua persamaan itu sesuai ruasnya, kita peroleh
$$\begin{aligned} \dfrac{3}{AG} \cdot \dfrac{AG}{5} & = \dfrac{1}{HC} \cdot JE \\ \dfrac35 & = \dfrac{JE}{HC} \\ \dfrac{HC}{JE} & = \dfrac53. \end{aligned}$$Jadi, hasil dari $\dfrac{HC}{JE}$ adalah $\boxed{\dfrac53}$
(Jawaban D)

[collapse]

Bagian Uraian

Soal Nomor 1

Dua mahasiswa teknik sipil bernama Agung dan Ali ingin memperkirakan tinggi suatu bukit terhadap posisi mereka berdiri yang tidak jauh dari bukit itu. Mereka menggunakan bantuan peralatan laser yang dipasang pada sebuah tongkat penyangga setinggi $3$ m dari permukaan tanah. Agung mengamati puncak bukit melalui alat tersebut dan diperoleh garis pandang ke puncak bukit sejauh $1.540$ m. Ali berbaring di tanah, memandang ke arah ujung peralatan tersebut dan puncak bukit sehingga tampak sebagai garis lurus. Posisi mata Ali adalah $4$ m dari tongkat penyangga. Ilustrasi dapat dilihat pada gambar berikut.
Sketsa kesebangunan segitiga dalam pengukuran tinggi bukit
Perkirakan tinggi bukit tersebut.

Pembahasan

Perhatikan sketsa gambar berikut.

Panjang $AB$ dapat dicari dengan menggunakan rumus Pythagoras.
$\begin{aligned} AB & = \sqrt{AC^2 + BC^2} \\ & = \sqrt{4^2 + 3^2} \\ & = \sqrt{25} = 5~\text{m} \end{aligned}$
Dengan menggunakan prinsip kesebangunan pada segitiga siku-siku $ABC$ dan $AED$, yaitu memakai perbandingan panjang hipotenusa dan tinggi segitiganya, diperoleh
$\begin{aligned} \dfrac{BC}{ED} & = \dfrac{AB}{AE} \\ \Rightarrow \dfrac{3}{t} & = \dfrac{5}{5 + 1.540} \\ \dfrac{3}{t} & = \dfrac{1}{309} \\ t & = 3 \times 309 = 927~\text{m} \end{aligned}$
Jadi, tinggi bukit tersebut diperkirakan $\boxed{927~\text{m}}$

[collapse]

Soal Nomor 2

Perhatikan gambar berikut.
Kesebangunan Segitiga ABC dan EBDJika $ED = \sqrt8$ cm dan diketahui luas segitiga $ABC$ = luas trapesium $ACDE$, tentukan panjang $AC$.

Pembahasan

Dari gambar, diketahui bahwa $\triangle ABC$ sebangun dengan $\triangle EBD$.
Perhatikan bahwa $L_{\triangle EBD} = L_{\triangle ABC} + L_{ACDE}$.
Karena luas segitiga $ABC$ sama dengan luas trapesium $ACDE$, maka diperoleh
$L_{\triangle EBD} = 2L_{\triangle ABC}$, artinya $L_{\triangle EBD} : L_{\triangle ABC} = 2 : 1$.
Berdasarkan prinsip kesebangunan bangun datar, diperoleh
$\begin{aligned} \dfrac{L_{\triangle ABC}}{L_{\triangle EBD}} & = \dfrac{AC^2}{ED^2} \\ \dfrac12 & = \dfrac{AC^2}{(\sqrt8)^2} \\ \dfrac12 & = \dfrac{AC^2}{8} \\ AC^2 & = \dfrac{8}{2} = 4 \\ AC & = \sqrt4 = 2~\text{cm} \end{aligned}$
Jadi, panjang $\boxed{AC = 2~\text{cm}}$

[collapse]

Soal Nomor 3 (Soal OSK)

Diberikan persegi berukuran $3 \times 3$ satuan seperti pada gambar. Luas segi lima yang diarsir adalah $\cdots \cdot$

Pembahasan

Posisikan titik $X, Y, Z, A, B, C$ seperti gambar berikut.
$\triangle XYZ$ sebangun dengan $\triangle ABC$ dengan perbandingan sisi yang bersesuaian $XY \sim AB$ dan $YZ \sim BC$. Akibatnya,

$YZ = \dfrac12 = \dfrac16BC$ dan juga $XY = \dfrac16AB$.
Oleh karena itu,
$\begin{aligned} L_{\triangle XYZ} & = \dfrac12 \cdot \left(\dfrac16 \cdot 2\right) \cdot \left(\dfrac16 \cdot 3\right) \\ & =  \dfrac12 \cdot \dfrac 13 \cdot \dfrac12 = \dfrac{1}{12} \end{aligned}$
Jadi, luas segi lima yang diarsir adalah $\boxed{1-\dfrac{1}{12}=\dfrac{11}{12}}$

[collapse]

13 Replies to “Soal dan Pembahasan – Kesebangunan dan Kekongruenan”

  1. Halo admin math cyber. Saya mau koreksi Nomor 17 dimana AD = BG/GB = 2 cm. Tetapi ketika di penyelesaian GB nya menjadi 3 cm

  2. Halo admin math cyber. Saya mau koreksi Nomor 17 dimana AD = BG/GB = 2 cm. Tetapi ketika di penyelesaian GB nya menjadi 3 cm

Leave a Reply

Your email address will not be published. Required fields are marked *