Ketaksamaan QM-AM-GM-HM – Materi, Soal, dan Pembahasan

Ketaksamaan QM-AM-GM-HM mungkin terdengar asing bagi kebanyakan orang karena teorema ini muncul dan dipakai hanya pada saat mengerjakan soal-soal setingkat olimpiade (untuk kalangan sekolah menengah), tetapi akan dipelajari secara mendalam oleh mahasiswa yang bereksplorasi dalam dunia matematika atau yang serumpun. Berikut disajikan definisi QM-AM-GM-HM.

Definisi: Rataan Kuadrat (Quadratic Mean – QM)

Jika diberikan data (bilangan) $x_1, x_2, \cdots, x_n$, maka nilai dari rataan kuadrat data itu dinyatakan oleh
$\textbf{QM} = \sqrt{\dfrac{x_1^2+x_2^2+\cdots+x_n^2}{n}}$

Definisi: Rataan Aritmetik (Arithmetic Mean – AM)

Jika diberikan data (bilangan) $x_1, x_2, \cdots, x_n$, maka nilai dari rataan aritmetik data itu dinyatakan oleh
$\textbf{AM} = \dfrac{x_1+x_2+\cdots+x_n}{n}$
Catatan: Rataan aritmetik (kadang disebut sebagai rataan hitung) adalah nilai rata-rata yang telah kita kenal sejak Sekolah Dasar.

Definisi: Rataan Geometrik (Geometric Mean – GM)

Jika diberikan data (bilangan) $x_1, x_2, \cdots, x_n$, maka nilai dari rataan geometrik data itu dinyatakan oleh
$\textbf{GM} = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}$
Catatan: Rataan geometrik sering kali disebut sebagai rataan ukur.

Definisi: Rataan Harmonik (Harmonic Mean – HM)

Jika diberikan data (bilangan) $x_1, x_2, \cdots, x_n$, maka nilai dari rataan harmonik data itu dinyatakan oleh
$\textbf{HM} = \dfrac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}}$

Ketaksamaan berikut selalu berlaku dan banyak digunakan untuk menyelesaikan persoalan maksimum-minimum.
$\textbf{QM} \geq \textbf{AM} \geq \textbf{GM} \geq \textbf{HM}$
Tips: untuk mempermudah mengingatnya, coba hafalkan mnemonik: Qu Adalah Guitar Hero.

Berikut disajikan beberapa soal dan pembahasan terkait penggunaan ketaksamaan tersebut. Sejumlah di antaranya merupakan soal OSN/KSN atau yang setingkat dengannya. Semoga bermanfaat!

Quote by Chadidjah Hakim

Manusia membutuhkan ilmu lebih daripada makan dan minum. Kita hanya makan 1 – 3 kali sehari, sedangkan kebutuhan akan ilmu sebanyak tarikan napas.

Bagian Pilihan Ganda

Soal Nomor 1
Untuk $x \geq 0$, nilai terkecil dari $\dfrac{4x^2+8x+13}{6+6x}$ adalah $\cdots \cdot$
A. $0$                   C. $2$                  E. $5$
B. $1$                   D. $4$

Pembahasan

Perhatikan bahwa
$\begin{aligned} \dfrac{4x^2+8x+13}{6+6x} & = \dfrac{4(x^2+2x)+13}{6+6x} \\ & = \dfrac{4((x+1)^2-1)+13}{6+6x} \\ & = \dfrac{4(x+1)^2+9}{6+6x} \end{aligned}$
Sekarang, dengan menggunakan Ketaksamaan AM-GM, memakai dua suku, yakni $\dfrac{4(x+1)^2}{6+6x}$ dan $\dfrac{9}{6+6x}$, diperoleh
$$\begin{aligned} \dfrac{4(x+1)^2}{6+6x} + \dfrac{9}{6+6x} & \geq 2\sqrt{\dfrac{4(x+1)^2}{6+6x} \cdot \dfrac{9}{6+6x}} \\ \dfrac{4(x+1)^2+9}{6+6x} & \geq 2 \cdot \dfrac{2(x+1)(3)}{6+6x} \\ \dfrac{4(x+1)^2+9}{6+6x} & \geq 2 \cdot \dfrac{\cancel{6x+6}}{\cancel{6+6x}} \\ \dfrac{4(x+1)^2+9}{6+6x} & \geq 2 \end{aligned}$$Ketaksamaan terakhir menunjukkan bahwa nilai minimum dari $\dfrac{4x^2+8x+13}{6+6x}$ adalah $\boxed{2}$
(Jawaban C)

[collapse]

Soal Nomor 2
Nilai minimum dari $x + \dfrac{1}{x^2}$ adalah $\cdots \cdot$
A. $3\sqrt[3]{\dfrac12}$                      D. $3\sqrt{\dfrac18}$
B. $3\sqrt[3]{\dfrac14}$                      E. $\sqrt[3]{\dfrac14}$
C. $3\sqrt{\dfrac12}$

Pembahasan

Misalkan $f(x) = x + \dfrac{1}{x^2} = \dfrac{x}{2} + \dfrac{x}{2} + \dfrac{1}{x^2}$.
Dengan menggunakan Ketaksamaan AM-GM, memakai $3$ suku, yaitu $\dfrac{x}{2}, \dfrac{x}{2}$, dan $\dfrac{1}{x^2}$, diperoleh
$\begin{aligned} \dfrac{x}{2} + \dfrac{x}{2} + \dfrac{1}{x^2} & \geq 3\sqrt[3]{\dfrac{x}{2} \cdot \dfrac{x}{2} \cdot \dfrac{1}{x^2}} \\ x + \dfrac{1}{x^2} & \geq 3\sqrt[3]{\dfrac14} \end{aligned}$
Ketaksamaan terakhir menunjukkan bahwa nilai minimum $x + \dfrac{1}{x^2}$ adalah $\boxed{3\sqrt[3]{\dfrac14}}$
(Jawaban B)

[collapse]

Soal Nomor 3
Untuk bilangan real positif $x$ dan $y$ dengan $xy=\dfrac13$, nilai minimum dari $\dfrac{1}{9x^6}+\dfrac{1}{4y^6}$ sama dengan $\cdots \cdot$
A. $5$                    C. $8$                   E. $11$
B. $6$                    D. $9$

Pembahasan

Diketahhi $\color{blue}{xy = \dfrac13}$.
Misalkan $x_1 = \dfrac{1}{9x^6}$ dan $x_2 = \dfrac{1}{4y^6}$. Dengan menggunakan Ketaksamaan AM-GM pada kedua datum tersebut, kita peroleh
$\begin{aligned} \textbf{AM} & \geq \textbf{GM} \\ \dfrac{1}{9x^6}+\dfrac{1}{4y^6} & \geq 2\sqrt{\dfrac{1}{9x^6} \cdot \dfrac{1}{4y^6}} \\ & = 2\sqrt{\dfrac{1}{36(xy)^6}} \\ & = 2 \cdot \dfrac{1}{6(\color{blue}{xy})^3} \\ & = \dfrac{1}{3(\frac13)^3} = \dfrac{1}{\frac19} = 9 \end{aligned}$
Jadi, nilai minimum dari $\dfrac{1}{9x^6}+\dfrac{1}{4y^6}$ sama dengan $\boxed{9}$
(Jawaban D)

[collapse]

Soal Nomor 4 (Soal OSN-K Matematika SMP Tahun 2013)
Jika jumlah dua bilangan bulat positif adalah $24$, maka nilai terkecil dari jumlah kebalikan bilangan-bilangan tersebut adalah $\cdots \cdot$
A. $1$                   C. $\dfrac13$                  E. $\dfrac16$
B. $\dfrac12$                  D. $\dfrac14$

Pembahasan

Misalkan dua bilangan itu adalah $x$ dan $y$, berarti $x+y=24$. Dalam hal ini, kita akan mencari nilai minimum dari $\dfrac{1}{x}+\dfrac{1}{y}$.
Dengan menggunakan Ketaksamaan AM-HM, yakni $\textbf{AM} \geq \textbf{HM}$, memakai suku $x$ dan $y$, diperoleh
$\begin{aligned} \dfrac{x+y}{2} & \geq \dfrac{2}{\frac{1}{x}+\frac{1}{y}} \\ \dfrac{24}{2} & \geq \dfrac{2}{\frac{1}{x}+\frac{1}{y}} \\ 12 & \geq \dfrac{2}{\frac{1}{x}+\frac{1}{y}} \\ \dfrac{1}{x}+\dfrac{1}{y} & \geq \dfrac{2}{12} = \dfrac16 \end{aligned}$
Ketaksamaan terakhir menunjukkan bahwa nilai minimum (terkecil) dari jumlah kebalikan bilangan-bilangan itu adalah $\boxed{\dfrac16}$
(Jawaban E)

[collapse]

Soal Nomor 5 (Soal OSN-P Matematika SMA Tahun 2009)
Bilangan rasional positif $a < b < c$ membentuk barisan aritmetika dan memenuhi $\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3$. Banyak bilangan positif $a$ yang memenuhi adalah $\cdots \cdot$
A. $0$                    C. $2$                    E. $4$
B. $1$                    D. $3$

Pembahasan

Diketahui $\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3$.
Misalkan $x_1 = \dfrac{a}{b}$, $x_2=\dfrac{b}{c}$, dan $x_3=\dfrac{c}{a}$, maka berdasarkan Ketaksamaan AM-GM, diperoleh
$\begin{aligned} \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a} & \geq 3\sqrt[3]{\dfrac{a}{b} \cdot \dfrac{b}{c} \cdot \dfrac{c}{a}} \\ & = 3\sqrt[3]{1} = 3(1) = 3 \end{aligned}$
Padahal diketahui bahwa $\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3$, dan berdasarkan teorema ketidaksamaan AM-GM, persamaan tersebut terjadi hanya ketika $\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{a}$, berakibat $a = b = c = 1$.
Di lain sisi, diketahui bahwa $a < b < c$ sehingga tidak mungkin ada nilai $a$ yang memenuhi.
(Jawaban A)

[collapse]

Soal Nomor 6 (Soal OSN-P Matematika SMA Tahun 2011)
Jika $a \geq b > 1$, maka nilai terbesar yang mungkin untuk $^a \log \left(\dfrac{a}{b}\right) + ^b \log \left(\dfrac{b}{a}\right)$ adalah $\cdots \cdot$
A. $0$                    C. $2$                    E. $8$
B. $1$                    D. $4$

Pembahasan

Sederhanakan dulu ekspresi logaritma yang diberikan menggunakan sifat-sifat logaritma.
$\begin{aligned} & ^a \log \left(\dfrac{a}{b}\right) + ^b \log \left(\dfrac{b}{a}\right) \\ & = (^a \log a-^a \log b)+(^b \log b-^b \log a) \\ & = (1-^a \log b)+(1-^b \log a) \\ & = 2-(^a \log b +^b \log a) \end{aligned}$
Supaya bernilai maksimum, maka nilai $^a \log b +^b \log a$ harus dibuat sekecil mungkin. Dengan kata lain, kita harus mencari nilai minimum dari ekspresi tersebut.
Gunakan Ketaksamaan AM-GM.
$\begin{aligned} ^a \log b +^b \log a & \geq 2\sqrt{^a \log b \cdot ^b \log a} \\ & = 2\sqrt{1} = 2 \end{aligned}$
Kita peroleh nilai minimumnya $\color{blue}{2}$. Akibatnya, nilai maksimum dari $2-(\color{blue}{^a \log b +^b \log a})$ adalah $2-\color{blue}{2}=0$.
(Jawaban A)

[collapse]

Soal Nomor 7
Nilai minimum dari $f(x) = \dfrac{9x^2 \sin^2 x + 4}{x \sin x}$ untuk $0 < x < \pi$ adalah $\cdots \cdot$
A. $8$                    C. $12$                   E. $14$
B. $10$                  D. $13$

Pembahasan

Diketahui
$\begin{aligned} f(x) &= \dfrac{9x^2 \sin^2 x + 4}{x \sin x} \\ & = 9x \sin x + \dfrac{4}{x \sin x} \end{aligned}$

Dengan menggunakan Ketaksamaan AM-GM, diperoleh
$$\begin{aligned} \textbf{AM} & \geq \textbf{GM} \\ 9x \sin x + \dfrac{4}{x \sin x} & \geq 2\sqrt{(9~\cancel{x \sin x})\left(\dfrac{4}{\cancel{x \sin x}}\right)} \\ & = 2\sqrt{36} = 12 \end{aligned}$$Akibatnya, $f(x) \geq 12$.
Jadi, nilai minimum dari $f(x)$ adalah $\boxed{12}$
(Jawaban C)

[collapse]

Soal Nomor 8 (Soal OSN-P Matematika SMA Tahun 2008)
Diberikan $f(x) = x^2+4$. Misalkan $x$ dan $y$ adalah bilangan real positif yang memenuhi $f(xy)+f(y-x)$ $=f(y+x)$. Nilai minimum dari $x+y$ adalah $\cdots \cdot$
A. $0$                  C. $\sqrt2$                  E. $2\sqrt2$
B. $1$                  D. $2$

Pembahasan

Dari $f(x)=x^2+4$, diperoleh
$$\begin{aligned} f(xy) & = (xy)^2 + 4 \\ f(y-x) & = (y-x)^2 + 4 = y^2-2xy+x^2+4 \\ f(y+x) & = (y+x)^2+4=y^2+2xy+x^2+4 \end{aligned}$$Substitusikan masing-masing pada persamaan $f(xy)+f(y-x)$ $=f(y+x)$.
$$\begin{aligned} ((xy)^2+4)+(\cancel{y^2}-2xy+\bcancel{x^2+4}) & = \cancel{y^2}+2xy+\bcancel{x^2+4} \\ (xy)^2+4-2xy & = 2xy \\ (xy)^2-4xy+4 & = 0 \\ (xy-2)^2 & = 0 \\ xy & = 2 \end{aligned}$$Selanjutnya, kita akan mencari nilai minimum dari $x+y$ menggunakan Ketaksamaan AM-GM serta fakta bahwa $\color{blue}{xy=2}$, yakni
$x+y \geq 2\sqrt{xy} = 2\sqrt{2}$
Jadi, nilai minimum dari $x+y$ adalah $\boxed{2\sqrt2}$
(Jawaban E)

[collapse]

Soal Nomor 9 (Soal OSN-P Matematika SMA Tahun 2009)
Banyaknya bilangan real $x$ yang memenuhi persamaan $x^4-2x^3+5x^2-176x$ $+2009=0$ adalah $\cdots \cdot$
A. $0$                     C. $2$                   E. $2009$
B. $1$                     D. $3$

Pembahasan

Diketahui $x^4-2x^3+5x^2-176x+2009=0$.
Dengan menggunakan Ketaksamaan AM-GM (melibatkan $5$ suku), kita peroleh
$$\begin{aligned} \dfrac{x^4-2x^3+5x^2-176x+2009}{5} & \geq \sqrt[5]{x^4(-2x^3)(5x^2)(-176x)(2009)} \\ \dfrac{0}{5} & \geq \sqrt[5]{x^{10} \cdot 1760 \cdot 2009} \\ 0 & \geq x^{10} \cdot 1760 \cdot 2009 \end{aligned}$$Ketaksamaan di atas bernilai benar ketika $x^{10}$ bernilai negatif atau nol. Karena $x$ bilangan real, maka $x^{10}$ tidak mungkin bernilai negatif, artinya satu-satunya kemungkinan adalah $x^{10}$ harus bernilai $0$, sehingga $x = 0$.
Jika $x = 0$ disubstitusikan pada polinomial $x^4-2x^3+5x^2-176x+2009$, hasilnya $0-0+0-0+2009 \neq 0$. Dengan demikian, tidak ada satu pun bilangan real $x$ yang memenuhi persamaan $x^4-2x^3+5x^2-176x+2009=0$.
(Jawaban A)

[collapse]

Soal Nomor 10
Nilai minimum dari $\dfrac{(a^3+b^3+1)(b^3+c^3+1)(c^3+a^3+1)}{a^2b^2c^2}$ untuk bilangan real positif $a, b, c$ adalah $\cdots \cdot$
A. $18$                  C. $30$                  E. $36$
B. $27$                  D. $33$

Pembahasan

Dengan menggunakan Ketaksamaan AM-GM pada $3$ suku: $a^3$, $b^3$, dan $1$, diperoleh
$\begin{aligned} a^3+b^3+1 & \geq 3\sqrt[3]{a^3(b^3)(1)} \\ a^3+b^3+1 & \geq 3ab && (\cdots 1) \end{aligned}$
Dengan prinsip yang sama untuk $b^3$, $c^3$, dan $1$, serta $c^3$, $a^3$, dan $1$, kita dapatkan
$\begin{aligned} b^3+c^3+1 & \geq 3bc && (\cdots 2) \\ c^3+a^3+1 & \geq 3ac && (\cdots 3) \end{aligned}$
Kalikan ketiga persamaan tersebut sesuai posisi ruasnya.
$$\begin{aligned} (a^3+b^3+1)(b^3+c^3+1)(c^3+a^3+1) & \geq (3ab)(3bc)(3ac) \\ (a^3+b^3+1)(b^3+c^3+1)(c^3+a^3+1) & \geq 27a^2b^2c^2 \\ \text{Bagi kedua ruas dengan}~&a^2b^2c^2 \\ \dfrac{(a^3+b^3+1)(b^3+c^3+1)(c^3+a^3+1)}{a^2b^2c^2} & \geq 27 \end{aligned}$$Dari ketaksamaan terakhir, kita peroleh bahwa nilai minimum dari $\dfrac{(a^3+b^3+1)(b^3+c^3+1)(c^3+a^3+1)}{a^2b^2c^2}$ adalah $\boxed{27}$
(Jawaban B)

[collapse]

Soal Nomor 11
Banyak pasangan bilangan real $(a, b)$ yang memenuhi persamaan $a^4+b^4=4ab-2$ adalah $\cdots \cdot$
A. $0$                   C. $2$                  E. $8$
B. $1$                   D. $4$

Pembahasan

Persamaan di atas ekuivalen dengan $a^4+b^4+2=4ab$.
Berdasarkan Ketaksamaan AM-GM yang melibatkan suku $a^4$ dan $b^4$, kita peroleh
$\begin{aligned} a^4+b^4 & \geq 2\sqrt{(a^4)(b^4)} \\ a^4+b^4 & \geq 2(ab)^2 \\ a^4 + b^4 + 2 & \geq 2(ab)^2 + 2 \end{aligned}$
Karena $a^4+b^4+2 = 4ab$, maka kita peroleh bahwa
$\begin{aligned} 2(ab)^2 + 2 & = 4ab \\ 2(ab)^2-4ab+2 & = 0 \\ \text{Bagi kedua ruas}&~\text{dengan}~2 \\ (ab)^2-2ab+1 & = 0 \\ (ab-1)^2 & = 0 \\ ab & = 1 \end{aligned}$
Substitusikan $ab = 1$ pada persamaan mula-mula,
$a^4+b^4 = 4(1)-2 = 2$
Di lain sisi, kesamaan dapat terjadi apabila $a^4=b^4$. Dengan demikian, kita peroleh $2b^4 = 2 \Rightarrow b = \pm 1$ dan $a = \pm 1$.
Perhatikan bahwa $ab = 1$, sehingga $a$ dan $b$ harus bertanda sama.
Jadi, pasangan bilangan real $(a, b)$ yang memenuhi persamaan tersebut ada $\boxed{2}$, yaitu $(1, 1)$ dan $(-1, -1)$.
(Jawaban C)

[collapse]

Bagian Uraian

Soal Nomor 1
Buktikan bahwa untuk setiap $x, y > 0$, berlaku $\dfrac{x}{y} + \dfrac{y}{x} \geq 2$.

Pembahasan

Berdasarkan Ketaksamaan AM-GM, diperoleh
$\begin{aligned} \textbf{AM} & \geq \textbf{GM} \\ \dfrac{\dfrac{x}{y}+\dfrac{y}{x}}{2} & \geq \sqrt{\dfrac{\bcancel{x}}{\cancel{y}} \cdot \dfrac{\cancel{y}}{\bcancel{x}}} = \sqrt1 = 1 \\ \dfrac{x}{y}+\dfrac{y}{x} & \geq 2 \end{aligned}$
Jadi, terbukti bahwa berlaku $\dfrac{x}{y} + \dfrac{y}{x} \geq 2$ untuk $x, y > 0$.

[collapse]

Soal Nomor 2
Untuk bilangan positif $a,b,c,d$, buktikan bahwa selalu berlaku
$(a+b+c+d)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right) \geq 16$.

Pembahasan

Misalkan diberikan bilangan positif $a, b, c, d$. Berdasarkan Ketaksamaan AM-HM, diperoleh
$$\begin{aligned} \textbf{AM} & \geq \textbf{HM} \\ \dfrac{a+b+c+d}{4} & \geq \dfrac{4}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \\ (a+b+c+d)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right) & \geq 4(4) = 16 \end{aligned}$$Jadi, terbukti bahwa $(a+b+c+d)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right) \geq 16$.

[collapse]

Soal Nomor 3
Untuk $p, q, r > 0$ dan $p+q+r = 1$, buktikan bahwa $\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r} \geq 9$.

Pembahasan

Diketahui $\color{red}{p+q+r = 1}$.
Kita akan menggunakan Ketaksamaan AM-HM, yaitu $\textbf{AM} \geq \textbf{HM}$.
$\begin{aligned} \dfrac{\color{red}{p+q+r}}{3} & \geq \dfrac{3}{\frac{1}{p}+\frac{1}{q}+\frac{1}{r}} \\ \dfrac{\color{red}{1}}{3} & \geq \dfrac{3}{\frac{1}{p}+\frac{1}{q}+\frac{1}{r}} \\ \dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r} & \geq 3(3) = 9 \end{aligned}$
Jadi, terbukti bahwa $\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{r} \geq 9$.

[collapse]

Soal Nomor 4
Untuk $a,b,c \geq 0$, buktikan bahwa $(a+b)(a+c)(b+c) \geq 8abc$

Pembahasan

Dengan menggunakan Ketaksamaan AM-GM, berlaku $3$ pernyataan berikut.
$\begin{aligned} \dfrac{a+b}{2} & \geq \sqrt{ab} && (\cdots 1) \\ \dfrac{a+c}{2} & \geq \sqrt{ac} && (\cdots 2) \\ \dfrac{b+c}{2} & \geq \sqrt{bc} && (\cdots 3) \end{aligned}$
Kalikan masing-masing sesuai ruasnya dan kita peroleh
$\begin{aligned} \dfrac{a+b}{2} \cdot \dfrac{a+c}{2} \cdot \dfrac{b+c}{2} & \geq \sqrt{ab} \cdot \sqrt{ac} \cdot \sqrt{bc} \\ \dfrac{(a+b)(a+c)(b+c)}{8} & \geq \sqrt{a^2b^2c^2} \\ (a+b)(a+c)(b+c) & \geq 8abc \end{aligned}$
Jadi, terbukti bahwa untuk setiap $a,b,c \geq 0$, berlaku $(a+b)(a+c)(b+c) \geq 8abc$.

[collapse]

Soal Nomor 5
Buktikan bahwa untuk $x, y, z$ bilangan real positif, berlaku $x^2+y^2+z^2$ $\geq xy+xz+yz$. Kapan tanda kesamaan terjadi?

Pembahasan

Kita akan menggunakan Ketaksamaan AM-GM, memakai suku $x^2, y^2$, dan $z^2$.
Untuk masing-masing dua variabel, kita peroleh
$\begin{aligned} x^2+y^2 & \geq 2\sqrt{x^2 \cdot y^2} = 2xy \\ x^2+z^2 & \geq 2\sqrt{x^2 \cdot z^2} = 2xz \\ y^2+z^2 & \geq 2\sqrt{y^2 \cdot z^2} = 2yz \end{aligned}$
Jumlahkan ketiga ketaksamaan tersebut dan kita peroleh
$\begin{aligned} 2x^2+2y^2+2z^2 & \geq 2xy + 2xz + 2yz \\ \text{Bagi kedua ruas}&~\text{dengan}~2 \\ x^2+y^2+z^2 & \geq xy+xz+yz \end{aligned}$
Pernyataan terbukti.
Tanda kesamaan terjadi saat $x^2 = y^2 = z^2$, yakni ketika $x = y = z = 1$.

[collapse]

Soal Nomor 6 
Buktikan bahwa $999! < 500^{999}$. 

Pembahasan

Perhatikan bahwa
$999! = 1 \times 2 \times 3 \times \cdots \times 999$.
Berdasarkan Ketaksamaan AM-GM, berlaku
$$\boxed{\sqrt[n]{a_1 \times a_2 \times a_3 \times \cdots \times a_{n-1} \times a_n} \leq \dfrac{\sum_{i=1}^n a_n}{n}}$$Tanda kesamaan berlaku jika dan hanya jika $a_1=a_2=a_3=\cdots=a_{n-1}=a_n$.
Karena $a_1 \neq a_2 \neq a_3 \neq \cdots \neq a_{n-1} \neq a_n$, maka kita peroleh
$$\begin{aligned} \sqrt[n]{a_1 \times a_2 \times a_3 \times \cdots \times a_{n-1} \times a_n} & < \dfrac{\sum_{i=1}^n a_n}{n} \\ \sqrt[999]{1 \times 2 \times 3 \times \cdots \times 999} & < \dfrac{\color{blue}{1+2+3+\cdots+999}}{999} \end{aligned}$$Deret yang ditandai dengan warna biru di atas merupakan deret aritmetika. Jumlahnya dapat dicari dengan menggunakan rumus $\text{S}_n = \dfrac{n}{2}(a+\text{U}_n)$.
Kita akan peroleh ketaksamaan
$\begin{aligned} \sqrt[999]{999!} & < \dfrac{\dfrac{999}{2}(1+999)}{999} \\ \sqrt[999]{999!} & < \dfrac{\cancel{999} \cdot 500}{\cancel{999}} \\ \sqrt[999]{999!} & < 500 \\ 999! & < 500^{999} \end{aligned}$
Terbukti bahwa $999! < 500^{999}$.

[collapse]

Soal Nomor 7
Untuk $a, b>0$, buktikan bahwa $\left(\dfrac{a+nb}{n+1}\right)^{n+1} \geq ab^n$ dengan $n$ bilangan bulat positif.

Pembahasan

Dengan menggunakan Ketaksamaan AM-GM, memakai suku $a, \underbrace{b, b, \cdots, b}_{n~\text{kali}}$, diperoleh
$\begin{aligned} \dfrac{a+\overbrace{b+b+\cdots+b}^{n~\text{kali}}}{n+1} & \geq (a \cdot \overbrace{b \cdot b \cdots b}^{n~\text{kali}})^{\frac{1}{n+1}} \\ \dfrac{a+nb}{n+1} & \geq (ab^n)^{\frac{1}{n+1}} \\ \left(\dfrac{a+nb}{n+1}\right)^{n+1} & \geq ab^n \end{aligned}$
Jadi, terbukti bahwa ketaksamaan tersebut benar.

[collapse]

Soal Nomor 8
Buktikan bahwa $\left(\dfrac{a+1}{a}\right)^2+\left(\dfrac{b+1}{b}\right)^2 \geq 18$ untuk $a, b$ bilangan real positif serta $a+b=1$.

Pembahasan

Perhatikan bahwa
$$\begin{aligned} \dfrac{a+1}{a}+\dfrac{b+1}{b} & = \dfrac{a+(a+b)}{a}+\dfrac{b+(a+b)}{b} \\ & = 4 + \dfrac{a}{b} + \dfrac{b}{a} \end{aligned}$$Dengan menggunakan Ketaksamaan AM-GM, memakai dua suku, yaitu $\dfrac{a+1}{a}$ dan $\dfrac{b+1}{b}$, kita peroleh
$$\begin{aligned} \dfrac{a+1}{a} + \dfrac{b+1}{b} = 4 + \dfrac{a}{b}+\dfrac{b}{a} & \geq 4 + 2\sqrt{\dfrac{a}{b} \cdot \dfrac{b}{a}} \\ 4 + \dfrac{a}{b}+\dfrac{b}{a} & \geq 4+2 = 6 \end{aligned}$$Selanjutnya, dengan menggunakan Ketaksamaan QM-AM, memakai dua suku, yaitu $\dfrac{a+1}{a}$ dan $\dfrac{b+1}{b}$, kita peroleh
$$\begin{aligned} \left(\dfrac{\left(\dfrac{a+1}{a}\right)^2+\left(\dfrac{b+1}{b}\right)^2}{2}\right)^{1/2} & \geq \dfrac{\dfrac{a+1}{a}+\dfrac{b+1}{b}}{2} \\ \left(\dfrac{\left(\dfrac{a+1}{a}\right)^2+\left(\dfrac{b+1}{b}\right)^2}{2}\right)^{1/2} & \geq \dfrac{6}{2} = 3 \\ \dfrac{\left(\dfrac{a+1}{a}\right)^2+\left(\dfrac{b+1}{b}\right)^2}{2} & \geq 9 \\ \left(\dfrac{a+1}{a}\right)^2+\left(\dfrac{b+1}{b}\right)^2 & \geq 18 \end{aligned}$$Jadi, terbukti bahwa $\left(\dfrac{a+1}{a}\right)^2+\left(\dfrac{b+1}{b}\right)^2 \geq 18$.

[collapse]

Soal Nomor 9
Jika $a, b > 0$ dan $a+b=1$, buktikan bahwa $\left(\dfrac{a^2+1}{a}\right)^2+\left(\dfrac{b^2+1}{b}\right)^2 \geq \dfrac{25}{2}$.

Pembahasan

Diketahui $\color{blue}{a+b=1}$.
Misalkan $f(a, b)$ adalah fungsi dua variabel.
$\begin{aligned} f(a, b) & = \left(\dfrac{a^2+1}{a}\right)^2+\left(\dfrac{b^2+1}{b}\right)^2 \\ & = \left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2 \\ & = a^2+2+\dfrac{1}{a^2} + b^2 + 2 + \dfrac{1}{b^2} \\ & = a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}+4 \end{aligned}$
Kita akan mencari nilai minimum $f(a, b)$, ekuivalen dengan mencari nilai minimum dari $g(a, b) = a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}$.
Dengan menggunakan Ketaksamaan QM-AM, memakai $2$ suku, yaitu $a$ dan $b$, diperoleh
$\begin{aligned} \sqrt{\dfrac{a^2 + b^2}{2}} & \geq \dfrac{a+b}{2} \\ \text{Kuadratkan}&~\text{kedua ruas} \\ \dfrac{a^2+b^2}{2} & \geq \left(\dfrac{\color{blue}{a+b}}{2}\right)^2 \\ \dfrac{a^2+b^2}{2} & \geq  \left(\dfrac{1}{2}\right)^2 = \dfrac14 \\ \color{red}{a^2+b^2} & \color{red}{\geq \dfrac12} \end{aligned}$
Jika kita menggunakan Ketaksamaan GM-HM dengan suku $a^2$ dan $b^2$, diperoleh
$\sqrt{a^2b^2} = ab \geq \dfrac{2}{\dfrac{1}{a^2}+\dfrac{1}{b^2}}~~~~(\cdots 1)$
Jika kita menggunakan Ketaksamaan AM-GM dengan suku $a$ dan $b$, diperoleh
$\begin{aligned} \dfrac{\color{blue}{a+b}}{2} & \geq \sqrt{ab} \\ \dfrac12 & \geq \sqrt{ab} \\ \text{Kuadratkan}&~\text{kedua ruas} \\ \dfrac14 & \geq ab && (\cdots 2) \end{aligned}$
Dari ketaksamaan $(1)$ dan $(2)$, diperoleh
$\begin{aligned} \dfrac14 & \geq \dfrac{2}{\dfrac{1}{a^2}+\dfrac{1}{b^2}} \\ \color{red}{\dfrac{1}{a^2}+\dfrac{1}{b^2}} & \color{red}{\geq 2(4) = 8} \end{aligned}$
Sekarang, jumlahkan $2$ ketaksamaan yang ditandai dengan warna merah.
$a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2} \geq 8+\dfrac12 = \dfrac{17}{2}$
Nilai minimum dari $g(a, b) = a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}$ adalah $\dfrac{17}{2}$, berarti nilai minimum dari $g(a,b) = f(a,b)+4$ adalah $\dfrac{17}{2}+4$ $=\dfrac{25}{2}$.
Jadi, terbukti bahwa $\left(\dfrac{a^2+1}{a}\right)^2+\left(\dfrac{b^2+1}{b}\right)^2 \geq \dfrac{25}{2}$.

[collapse]

Soal Nomor 10
Buktikan bahwa untuk bilangan real positif $a, b$, dan $c$ dengan $a+b+c \leq 6$, maka berlaku $\dfrac{a+2}{a(a+4)}+\dfrac{b+2}{b(b+4)}+\dfrac{c+2}{c(c+4)} \geq 1$.

Pembahasan

Tinjau bentuk
$\begin{aligned} \dfrac{1}{a} + \dfrac{1}{a+4} & = \dfrac{(a+4)+a}{a(a+4)} \\ & = \dfrac{2a+4}{a(a+4)} \\ & = \dfrac12 \cdot \dfrac{a+2}{a(a+4)} \end{aligned}$
Oleh karena itu,
$$\begin{aligned} & \dfrac{a+2}{a(a+4)}+\dfrac{b+2}{b(b+4)}+\dfrac{c+2}{c(c+4)} \\ & = \dfrac12\left(\dfrac{1}{a}+\dfrac{1}{a+4} + \dfrac{1}{b}+\dfrac{1}{b+4} + \dfrac{1}{c}+\dfrac{1}{c+4}\right) \\ & = \dfrac12\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a+4}+\dfrac{1}{b+4}+\dfrac{1}{c+4}\right) \end{aligned}$$Berdasarkan Ketaksamaan AM-HM menggunakan suku $a, b$, dan $c$, kita peroleh
$\begin{aligned} \dfrac{a+b+c}{3} & \geq \dfrac{3}{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}} \\ \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} & \geq \dfrac{9}{a+b+c} \end{aligned}$
Berdasarkan Ketaksamaan AM-HM menggunakan suku $a+4, b+4$, dan $c+4$, kita peroleh
$$\begin{aligned} \dfrac{a+4+b+4+c+4}{3} & \geq \dfrac{3}{\dfrac{1}{a+4}+\dfrac{1}{b+4}+\dfrac{1}{c+4}} \\ \dfrac{a+b+c+12}{3} & \geq \dfrac{3}{\dfrac{1}{a+4}+\dfrac{1}{b+4}+\dfrac{1}{c+4}} \\ \dfrac{1}{a+4}+\dfrac{1}{b+4}+\dfrac{1}{c+4} & \geq \dfrac{9}{a+b+c+12} \end{aligned}$$Sekarang, kita dapatkan
$$\begin{aligned} & \dfrac{a+2}{a(a+4)}+\dfrac{b+2}{b(b+4)}+\dfrac{c+2}{c(c+4)} \\ & = \dfrac12\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a+4}+\dfrac{1}{b+4}+\dfrac{1}{c+4}\right) \\ & \geq \dfrac12\left(\dfrac{9}{a+b+c}+\dfrac{9}{a+b+c+12}\right) \\ & \geq \dfrac12\left(\dfrac{9}{6}+\dfrac{9}{6+12}\right) \\ & = \dfrac12\left(\dfrac32 + \dfrac12\right) = 1 \end{aligned}$$Jadi, terbukti bahwa $\dfrac{a+2}{a(a+4)}+\dfrac{b+2}{b(b+4)}+\dfrac{c+2}{c(c+4)} \geq 1$.

[collapse]

Soal Nomor 11
Buktikan bahwa untuk $x$ dan $y$ bilangan real positif, berlaku
$\dfrac{1}{(1+\sqrt{x})^2} + \dfrac{1}{(1+\sqrt{y})^2} \geq \dfrac{2}{x+y+2}$.

Pembahasan

Berdasarkan Ketaksamaan AM-GM memakai suku $1$ dan $x$, diperoleh
$$\begin{aligned} 1+x & \geq 2\sqrt{(1)(x)} = 2\sqrt{x} \\ 1+x & \geq (1+\sqrt{x})^2-(1+x) \\ (1+x)+(1+x) & \geq (1+\sqrt{x})^2 \\ 2(1+x) & \geq (1+\sqrt{x})^2 \\ \dfrac{1}{(1+\sqrt{x})^2} & \geq \dfrac{1}{2(1+x)} && (\cdots 1)\end{aligned}$$Dengan prinsip yang sama, tetapi untuk suku $y$ dan $1$, diperoleh
$\dfrac{1}{(1+\sqrt{y})^2} \geq \dfrac{1}{2(1+y)}~~~~(\cdots 2)$
Jumlahkan kedua ketaksamaan di atas dan kita peroleh
$$\begin{aligned} \dfrac{1}{(1+\sqrt{x})^2} + \dfrac{1}{(1+\sqrt{y})^2} & \geq \dfrac{1}{2(1+x)}+\dfrac{1}{2(1+y)} \\ & = \dfrac12\left(\dfrac{1}{1+x}+\dfrac{1}{1+y}\right) && (\cdots 3) \end{aligned}$$Selanjutnya, gunakan Ketaksamaan AM-HM memakai suku $\dfrac{1}{1+x}$ dan $\dfrac{1}{1+y}$.
$$\begin{aligned} \dfrac{1}{1+x}+\dfrac{1}{1+y} & \geq 2 \cdot \dfrac{2}{\dfrac{1}{\frac{1}{1+x}} + \dfrac{1}{\frac{1}{1+y}}} \\ \dfrac{1}{1+x}+\dfrac{1}{1+y} & \geq \dfrac{4}{1+x+1+y} \\ \dfrac{1}{1+x}+\dfrac{1}{1+y} & \geq \dfrac{4}{x+y+2} && (\cdots 4) \end{aligned}$$Kita peroleh hubungan ketaksamaan $(3)$ dan $(4)$, yaitu
$$\begin{aligned} \dfrac{1}{(1+\sqrt{x})^2} + \dfrac{1}{(1+\sqrt{y})^2} & \geq \dfrac12\left(\dfrac{1}{1+x}+\dfrac{1}{1+y}\right) \\ \Rightarrow \dfrac{1}{(1+\sqrt{x})^2} + \dfrac{1}{(1+\sqrt{y})^2} & \geq \dfrac12\left(\dfrac{4}{x+y+2}\right) = \dfrac{2}{x+y+2} \end{aligned}$$Jadi, terbukti bahwa $\dfrac{1}{(1+\sqrt{x})^2} + \dfrac{1}{(1+\sqrt{y})^2} \geq \dfrac{2}{x+y+2}$.

[collapse]

Soal Nomor 12
Diberikan $a, b, c$ bilangan real positif. Buktikan bahwa
$$\dfrac{a}{a + \sqrt{(a+b)(a+c)}} + \dfrac{b}{b + \sqrt{(b+c)(b+a)}} + \dfrac{c}{c + \sqrt{(c+a)(c+b)}} \leq 1$$

Pembahasan

Klaim bahwa $\sqrt{(a+b)(a+c)} \geq \sqrt{ab} + \sqrt{ac}$.
Pada nyatanya, kuadrat kedua ruas menghasilkan ketaksamaan:
$\begin{aligned} \left(\sqrt{(a+b)(a+c)}\right)^2 & \geq \left(\sqrt{ab} + \sqrt{ac}\right)^2 \\ (a+b)(a+c) & \geq ab+2a\sqrt{bc} + ac \\ a^2+\cancel{ac+ab}+bc & \geq \cancel{ab}+2a\sqrt{bc} + \cancel{ac} \\ a^2+bc & \geq 2a\sqrt{bc} \end{aligned}$
Ketaksamaan terakhir merupakan ketaksamaan yang diperoleh dari hubungan AM-GM menggunakan suku $a^2$ dan $bc$. Jadi, klaim sebelumnya benar.
Karena $\sqrt{(a+b)(a+c)} \geq \sqrt{ab} + \sqrt{ac}$, maka diperoleh
$$\begin{aligned} \dfrac{a}{a + \sqrt{(a+b)(a+c)}} & \leq \dfrac{a}{a+\sqrt{ab}+\sqrt{ac}} \\ & = \dfrac{a}{\sqrt{a}(\sqrt{a}+\sqrt{b}+\sqrt{c}} \\ & = \dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} && (\cdots 1) \end{aligned}$$Dengan cara yang sama, diperoleh
$$\begin{aligned} \dfrac{b}{b + \sqrt{(b+c)(b+a)}} & \leq \dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} && (\cdots 2) \\ \dfrac{c}{c + \sqrt{(c+a)(c+b)}} & \leq \dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} && (\cdots 3) \end{aligned}$$Jumlahkan ketaksamaan $(1)$, $(2)$, dan $(3)$, kita dapatkan
$$\begin{aligned} & \dfrac{a}{a + \sqrt{(a+b)(a+c)}} + \dfrac{b}{b + \sqrt{(b+c)(b+a)}} + \dfrac{c}{c + \sqrt{(c+a)(c+b)}} \\ & \leq \dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} + \dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} + \dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} \\ & = \dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} = 1 \end{aligned}$$Jadi, ketaksamaan yang diberikan telah terbukti.

[collapse]

Soal Nomor 13
Misalkan $a$ dan $b$ adalah bilangan positif yang memenuhi $a+b=ab$. Buktikan bahwa $\dfrac{a}{b^2+2017} + \dfrac{b}{a^2+2017} \geq \dfrac{4}{2021}$.

Pembahasan

Diketahui $a + b = ab$.
Kuadratkan kedua ruas, kita peroleh
$\begin{aligned} (a + b)^2 & = (ab)^2 \\ a^2+b^2+2ab & = (ab)^2 \end{aligned}$
Menurut Ketaksamaan AM-GM, berlaku $a^2+b^2 \geq 2ab$, sehingga seterusnya kita peroleh
$\begin{aligned} a^2+b^2+\color{red}{+2ab} & \geq 2ab\color{red}{+2ab} \\ (ab)^2 & \geq 4ab \\ ab & \geq 4 \end{aligned}$
Untuk itu, kita dapatkan
$\begin{aligned} & \dfrac{a}{b^2+2017}+\dfrac{b}{a^2+2017} \\ & = \dfrac{a^2}{ab^2+2017a} + \dfrac{b^2}{a^2b + 2017b} \\ & \geq \dfrac{(a+b)^2}{ab(a+b)+2017(a+b)} \\ & = \dfrac{(ab)^2}{ab^2+2017ab} \\ & = \dfrac{ab}{ab+2017} = 1-\dfrac{2017}{ab+2017} \\ & \geq 1-\dfrac{2017}{4+2017} = \dfrac{4}{2021} \end{aligned}$
Jadi, terbukti bahwa $\dfrac{a}{b^2+2017}+\dfrac{b}{a^2+2017} \geq \dfrac{4}{2021}$.

[collapse]

CategoriesSOAL OLIMPIADE, Aljabar, TrigonometriTags, , , , , ,

Leave a Reply

Silakan beri tanggapan dan saran, tidak perlu sungkan. Mohon juga diinformasikan melalui kolom komentar ini bila ada kesalahan pengetikan sekecil apapun (typo atau bahasa latex yang error) atau kesalahan konsep dan pembahasan soal. Terima kasih. Ganbatte!

Your email address will not be published. Required fields are marked *