Berikut ini adalah soal-soal ON MIPA-PT bidang Analisis Kompleks beserta pembahasannya. Semoga bermanfaat dan salam sukses, pejuang ON MIPA!
Baca Juga: Soal dan Pembahasan – ON MIPA-PT Bidang Struktur Aljabar
Baca Juga: Soal dan Pembahasan – ON MIPA-PT Bidang Analisis Real
Baca Juga: Soal dan Pembahasan – ON MIPA-PT Bidang Aljabar Linear
Today Quote
Bagian Pilihan Ganda
Soal Nomor 1
Jika $z = \dfrac{4 + 3i}{2 – 2i}$, maka nilai dari $\text{Re}(z),\text{Im}(z)$, dan $|z|$ berturut-turut adalah $\cdots \cdot$
A. $\dfrac{1}{4}, \dfrac{7}{4}, \dfrac{5}{4}\sqrt{2}$
B. $-\dfrac{1}{4}, \dfrac{7}{4}, \dfrac{5}{4}\sqrt{2}$
C. $-\dfrac{1}{4}, -\dfrac{7}{4}, \dfrac{5}{4}\sqrt{2}$
D. $\dfrac{1}{4}, \dfrac{7}{4}, -\dfrac{5}{4}\sqrt{2}$
E. $-\dfrac{1}{4}, \dfrac{7}{4}, -\dfrac{5}{4}\sqrt{2}$
Perhatikan bahwa $\begin{aligned}z & = \dfrac{4 + 3i}{2 -2i} \\ & = \dfrac{4 + 3i}{2 -2i} \times \dfrac{2 + 2i}{2 + 2i} \\ & = \dfrac{8 + 8i + 6i -6}{4 + 4} \\ & = \dfrac{7i + 1}{4} = \dfrac{1}{4} + \dfrac{7}{4}i. \end{aligned}$
Diperoleh $\text{Re}(z) = \dfrac{1}{4}$ dan $\text{Im}(z) = \dfrac{7}{4}$ sehingga
$|z| = \sqrt{\left(\dfrac{7}{4}\right)^2 + \left(\dfrac{1}{4}\right)^2} = \dfrac{5}{4}\sqrt{2}$.
(Jawaban A)
Bagian Isian/Uraian
Soal Nomor 1
Hitunglah $(i -1)^{49}\left(\cos \dfrac{\pi}{40} + i~\sin \dfrac{\pi}{40}\right)^{10}$.
Ingat: $\boxed{\cos \theta + i~\sin \theta = \text{cis}~\theta = e^{i\theta}}$
Tinjau ekspresi $(i -1)^{49}$.
Ubah dalam bentuk polar sebagai berikut.
$r = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$.
$\begin{aligned} \theta & = \arctan \dfrac{1}{-1} \\ & = \arctan (-1) \\ & = \dfrac{3\pi}{4}~~~(\text{kuadran II}) \end{aligned}$
Jadi, dapat ditulis
$$\begin{aligned} (i -1)^{49} & = r^{49}\left(\cos \theta + i~\sin \theta\right)^{49} \\ & = (\sqrt{2})^{49}\left(\cos \dfrac{3\pi}{4} + i~\sin \dfrac{3\pi}{4}\right)^{49} \\ & = (\sqrt{2})^{49}(e^{\frac{3i\pi}{4}})^{49}. \end{aligned}$$Diperoleh
$$\begin{aligned} (i -1)^{49}\left(\cos \dfrac{\pi}{40} + i~\sin \dfrac{\pi}{40}\right)^{10} & = (\sqrt{2})^{49}(e^{\frac{3i\pi}{4}})^{49}(e^{\frac{i\pi}{40}})^{10} \\ & = (\sqrt{2})^{49}(e^{\frac{148i\pi}{4}}) \\ & = (\sqrt{2})^{49}(e^{37i\pi}) \\ & = (\sqrt{2})^{49}(\cos 37\pi + i~\sin 37\pi) \\ & = (\sqrt{2})^{49}(\cos \pi + i~\sin \pi) \\ & = (\sqrt{2})^{49}(-1 + 0) \\ & = \boxed{-(\sqrt{2})^{49}} \end{aligned}$$
Soal Nomor 2
Nilai dari $\int_{0}^{\frac{\pi}{4}} e^{it}~dt$ adalah $\cdots \cdot$
Ingat bahwa
$\boxed{e^{it} = \cos t + i~\sin t} $
Jadi, integrannya dapat ditulis
$\begin{aligned} & \displaystyle \int_{0}^{\frac{\pi} {4}} (\cos t + i~\sin t)~\text{d}t \\ & = [\sin t -i~\cos t)]_{0}^{\frac{\pi} {4}} \\ & = \left(\dfrac{1}{2}\sqrt{2}- i~\dfrac{1}{2}\sqrt{2}\right) + i \\ & =\boxed{ \dfrac{1}{2}\sqrt{2} +i \left(1-\dfrac{1}{2}\sqrt{2}\right)} \end{aligned} $
Baca Juga: Soal dan Pembahasan – Bilangan Kompleks dan Perhitungannya
Soal Nomor 3
Hitunglah nilai $\displaystyle \oint_{|z|=2} \dfrac{z+2}{z^2-z}~\text{d}z$.
Lingkaran $|z|=2$ memuat pole sederhana dari integral di $z = 0$ dan $z = 1$ (terindentifikasi melalui pembuat nol pada penyebut fungsi kompleksnya). Untuk itu, residu dari masing-masing titik itu adalah
$\displaystyle \lim_{z \to 0} \dfrac{z(z+2)} {z^2-z} = \lim_{z \to 0} \dfrac{z+2}{z-1} = -2$
$\displaystyle \lim_{z \to 1} \dfrac{(z-1)(z+2)} {z^2-z} = \lim_{z \to 1} \dfrac{z+2}{z} = 3.$
Berdasarkan Teorema Residu, diperoleh
$\begin{aligned} \displaystyle \oint_{|z|=2} \dfrac{z+2}{z^2-z}~\text{d}z & = 2\pi i(\sum \text{Res}) \\ & = 2\pi i(-2+3) \\ & = 2 \pi i. \end{aligned}$
Jadi, $\boxed{\displaystyle \oint_{|z|=2} \dfrac{z+2}{z^2-z}~\text{d}z = 2\pi i}$
Soal Nomor 4
Misalkan $z$ terletak pada lingkaran $|z| = 2$. Estimasi nilai dari $\left|\dfrac{z} {z^3-z^2-2z+2}\right|$ adalah $\cdots \cdot$
Perhatikan bahwa
$$\begin{aligned} \left|\dfrac{z} {z^3-z^2-2z+2}\right| & = \left|\dfrac{z} {(z^2-2)(z-1)}\right| \\ & = \dfrac{|z|} {|z^2-2||z-1|} \\ & \leq \dfrac{|z|} {||z|^2-2| \cdot ||z|-1|} \\ & \text{Substitusi}~|z|=2 \\ & = \dfrac{2}{|2^2-2| \cdot |2-1|} \\ & = \dfrac{2}{2 \cdot 1} = 1. \end{aligned}$$Jadi, estimasi nilai dari $\left|\dfrac{z} {z^3-z^2-2z+2}\right| = 1$.
Soal Nomor 5
Diketahui $P(z) = z^3-3z^2+4z-5$ dan $Q(z) = z^2(1+Q(z))$ dengan $Q(0) \neq -1$. Tentukan residu dari $f(z) = \dfrac{P(z)} {Q(z)}$ di $z = 0$.
Diberikan
$\begin{aligned} Q(z) & = z^2(1+Q(z)) \\ Q(z) & = z^2 + z^2Q(z) \\ Q(z)(1 -z^2) & = z^2 \\ Q(z) & = \dfrac{z^2}{1-z^2}. \end{aligned}$
Untuk itu,
$\begin{aligned} f(z) & = \dfrac{P(z)} {Q(z)} \\ & = \dfrac{(z^3-3z^2+4z-5)(1-z^2)} {z^2}. \end{aligned}$
Titik $z = 0$ merupakan pole ganda dari $f(z)$ karena
$$\begin{aligned} \displaystyle \lim_{z \to 0} z^2f(z) & = \lim_{z \to 0} \dfrac{\cancel{z^2}(z^3-3z^2+4z-5)(1-z^2)} {\cancel{z^2}} \\ & = -5 \neq 0. \end{aligned}$$Jadi, residu di $z = 0$ adalah
$$\begin{aligned} \displaystyle \lim_{z \to z_0} \dfrac{\text{d}} {\text{d}z} (z^2f(z)) & = \lim_{z \to 0} \dfrac{\text{d}} {\text{d}z} ((z^3-3z^2+4z-5)(1-z^2)) \\ & = \lim_{z \to 0} \dfrac{\text{d}} {\text{d}z} (-z^5+3z^4-3z^3+2z^2+4z-5) \\ & = \lim_{z \to 0} (-5z^4 + 12z^3 -9z^2 + 4z + 4) = 4. \end{aligned}$$
Soal Nomor 6
Tentukan nilai maksimum dan minimum dari modulus $z^2-z$ pada cakram $|z| \leq 1$.
Nilai maksimum dari $|z^2-z|$ adalah
$\begin{aligned} |z^2-z| & \leq ||z|^2 + |-z|| \\ & \leq |z^2| + |z| \\ & \leq 1^2+1 = 2. \end{aligned}$
Nilai minimum dari $|z^2-z|$ adalah
$\begin{aligned} |z^2-z| & \leq ||z|^2 -|-z|| \\ & \leq |z^2| -|z| \\ & \leq 1^2-1 = 0. \end{aligned}$
Jadi, nilai maksimum dan minimum dari modulus $z^2-z$ pada cakram $|z| \leq 1$ berturut-turut adalah $2$ dan $0$.
Soal Nomor 7
Diketahui $F: \mathbb{C} \to \mathbb{C}$ analitik. Untuk $a \in \mathbb{C}$ didefinisikan sebagai
$F(z) = \begin{cases} \dfrac{F(z) – F(a)} {z-a}, & z \neq a \\ A, & z = a \end{cases}$
Tentukan nilai $A$ agar $F$ kontinu di $\mathbb{C}$.
Agar $F$ kontinu pada $z=a$, maka haruslah $\displaystyle \lim_{z \to a} \dfrac{F(z)- F(a)} {z-a} = A.$
Dengan menggunakan Dalil L’Hospital, diperoleh
$\displaystyle \lim_{z \to a} \dfrac{F'(z)} {1} = F'(a) = A.$
Jadi, nilai $\boxed{A = F'(a)}$
Soal Nomor 8
Hitung nilai $\displaystyle \int_C z^2e^{\frac{1}{z}}~\text{d}z$ dengan $C$ adalah lengkungan lingkaran $|z|=3$ yang searah jarum jam.
Asumsikan bahwa lengkungan dalam arah positif. Dengan melakukan ekspansi deret pada $e^{\frac{1}{z}}$, diperoleh
$$\begin{aligned} z^2e^{\frac{1}{z}} & = z^2 \left(1 + \dfrac{1}{z} + \dfrac{1}{2!z^2} + \dfrac{1}{3!z^3} + \cdots\right) \\ & = z^2+z+\dfrac{1}{2!} + \dfrac{1}{3!z} + \cdots \end{aligned}$$Karena fungsi integral memuat pole esensial di $z = 0$, maka residu di titik tersebut adalah koefisien dari $\dfrac{1}{z-z_0}=\dfrac{1}{z-0} = \dfrac{1}{z}$, yakni $\dfrac{1}{3!}$ sehingga $\boxed{\displaystyle \int_C z^2e^{\frac{1}{z}}~\text{d}z = \dfrac{-2\pi i} {3!} = -\dfrac{\pi i} {3}}$
Soal Nomor 9
Diketahui fungsi analitik $f(z) = \dfrac{2(z-2)} {z(z-4)} $ dapat ditulis sebagai $f(z) = \displaystyle \sum_{n = 0}^{\infty} a_n(z-1)^n$.
Nilai $a_{100}$ adalah $\cdots \cdot$
Perhatikan bahwa
$$\begin{aligned} f(z) & = \dfrac{2(z-2)} {z(z-4)} \\& = \dfrac{1}{z} + \dfrac{1}{z-4} \\ & = \dfrac{1}{1+(z-1)} + \dfrac{1}{-3+(z-1)} \\ & = \displaystyle \sum_{n=0}^{\infty} (-1)^n(z-1)^n -\dfrac{1}{3} \sum_{n=0}^{\infty} \left(\dfrac{z-1}{3}\right)^n \\ & = \sum_{n=0}^{\infty} \left(-\dfrac{1}{3^{n+1}} + (-1)^n\right)(z-1)^n. \end{aligned}$$Dengan demikian, diperoleh $a_n = -\dfrac{1}{3^{n+1}} + (-1)^n$ sehingga
$$\boxed{a_{100} = -\dfrac{1}{3^{100+1}} + (-1)^{100} = -\dfrac{1}{3^{101}} + 1}$$
Soal Nomor 10
Tentukan daerah konvergensi deret $\displaystyle \sum_{n = 0}^{\infty} \left(z^n + \dfrac{1}{2^nz^n}\right).$
Deret $z^n$ konvergen untuk $|z|<1$, sedangkan deret $\dfrac{1}{2^nz^n} = \left(\dfrac{1}{2z}\right)^n$ konvergen untuk $\left|\dfrac{1}{2z}\right| < 1$ atau disederhanakan menjadi $z > \dfrac{1}{2}$.
Jadi, deret $\displaystyle \sum_{n = 0}^{\infty} \left(z^n + \dfrac{1}{2^nz^n}\right)$ konvergen untuk $\boxed{\dfrac{1}{2} < z < 1}$, yang merupakan daerah konvergensinya.
Soal Nomor 11
Nilai dari $5~\text{Re}(z) + 7~\text{Im}(z)$ jiks $z = (3-3i)^{2018}$ adalah $\cdots \cdot$
Perhatikan bahwa $(3,-3)$ berada di kuadran IV. Untuk itu,
$\begin{aligned} z & = (3-3i)^{2018} \\ & = (\sqrt{3^2+(-3)^2} \cdot \text{cis}~(-315^{\circ}))^{2018} \\ & = \left(3\sqrt{2} \cdot \text{cis}~\left(-\dfrac{1}{4}\pi\right)\right)^{2018}. \end{aligned}$
Dengan menggunakan Teorema de Moivre, diperoleh
$$\begin{aligned} z & = (3\sqrt{2})^{2018} \cdot \text{cis}~\left(2018\cdot \left(-\dfrac{1}{4}\pi\right)\right) \\ & = (3\sqrt{2})^{2018} \cdot \text{cis}~\left(-504\dfrac{1}{2}\pi\right) \\ & = (3\sqrt{2})^{2018} \left(\cos -\dfrac{1}{2}\pi + i \sin -\dfrac{1}{2}\pi \right) \\ & =(3\sqrt{2})^{2018}(0-i) \\ & = -(3\sqrt{2})^{2018}i \end{aligned}$$Bentuk terakhir menunjukkan bahwa $\text{Re}~z = 0$ dan $\text{Im}~z = -(3\sqrt{2})^{2018}$.
Jadi,
$\begin{aligned} & 5~\text{Re}(z) + 7~\text{Im}(z)\\ & = 5(0) + 7(-1) (3\sqrt{2})^{2018} \\ & = -7\cdot 3^{2018} \cdot 2^{1009}. \end{aligned}$
Soal Nomor 12
Hitung nilai $\displaystyle \oint_C \dfrac{e^z} {(z+\pi i)^3}~\text{d}z.$
Menurut Teorema Cauchy, kita tahu bahwa
$f^n(z_0)= \dfrac{n!} {2\pi i} \displaystyle \oint_C \dfrac{f(z)} {(z-z_0)^{n+1}}~\text{d}z$
jika $z_0$ analitik dalam kurva $C$.
Karena $z_0 = -\pi i$ berada dalam $C$ dan dari integral di atas diketahui bahwa $f(z) = e^z$, maka berlaku
$$\begin{aligned} f^2(-\pi i) & = \dfrac{2!} {2\pi i} \displaystyle \oint \dfrac{e^z} {(z+\pi i)^3}~\text{d}z \\ \pi i \cdot e^{-2\pi i} & = \oint_C \dfrac{e^z} {(z+\pi i)^3}~\text{d}z \\ \oint_C \dfrac{e^z} {(z+\pi i)^3}~\text{d}z & = \pi i(\cos -2\pi + i \sin -2\pi) \\ & = \pi i(1 + 0) = \pi i. \end{aligned}$$Jadi, didapat $\boxed{\oint_C \dfrac{e^z} {(z+\pi i)^3}~\text{d}z = \pi i}$
Soal Nomor 13
Prapeta dari garis $x+y=1$ oleh transformasi linear $T(z) = 2iz + 2 -i$ adalah $\cdots \cdot$
Misalkan $z = x + iy$ sehingga
$\begin{aligned} T(x+iy) & = 2i(x+iy) + 2 -i \\ & = (2 -2y) + (2x -1)i. \end{aligned}$
Untuk itu, diperoleh
$x + y = 1 \Rightarrow (2 -2y) + (2x -1) = 1$
yang bila disederhanakan lebih lanjut, didapat $y = x$.
Jadi, prapeta dari garis $x+y=1$ oleh transformasi linear $T(z) = 2iz + 2 -i$ adalah $\boxed{y = x}$
Soal Nomor 14
Diketahui polinomial $p(z)$ dan $q(z)$ sehingga berlaku $p(z) \cos^2 z + q(z) \sin^2 z = 2$ untuk setiap $z \in \mathbb{C}.$
Hitunglah $p(1) + q(1).$
Diketahui $p(z) \cos^2 z + q(z) \sin^2 z = 2.$
Misalkan $z = n\pi, n \in \mathbb{Z}$, berarti diperoleh
$p(n\pi) \cos^2 (n\pi) + q(n \pi) \sin^2 (n \pi) = 2.$
Perhatikan bahwa $\cos^2 (n\pi) = 1$ dan $\sin^2 (n \pi) = 0$, maka selanjutnya didapat
$\begin{aligned} p(n\pi) (1) + q(n \pi) (0) & = 2 \\ p(n \pi) & = 2. \end{aligned}$
Karena ada tak hingga banyaknya $n$ yang memenuhi persamaan di atas, maka dengan kata lain ada tak hingga $z$ yang memenuhi $p(z) = 2$.
Setiap polinomial tak konstan $f(z)$ memenuhi $\displaystyle \lim_{z \to \infty} f(z) = \pm \infty$ sehingga $z$ haruslah berhingga banyaknya dan ini berarti $p(z)$ pasti konstan. Jadi, didapat $p(1) = 2$.
Dengan prinsip yang sama, misalkan $z = \dfrac{\pi}{2} + n\pi, n \in \mathbb{Z}$, jika disubstitusikan ke persamaan awal, maka didapat $q\left(\dfrac{\pi} {2} + n \pi \right) = 2.$ Karena $q(z)$ konstan, maka haruslah $q(1) = 2.$
Jadi, $\boxed{p(1) + q(1) = 2 + 2 = 4}$
Soal Nomor 15
Jika $C:$ persegi panjang dengan titik sudut $2 + 2i, -2 + 2i, -2 -2i$, dan $2 -2i$, dengan $C$ berorientasi positif, nilai dari $\displaystyle \oint \dfrac{\cos z} {z(z^2-8)}~dz$ adalah $\cdots \cdot$
$C$ adalah kurva yang membentuk bangun persegi pada bidang kompleks. Perhatikanlah bahwa titik singular integran, yaitu $z = 0$ berada dalam $C$, sedangkan $z^2 -8 = 0 \Rightarrow z = \pm\sqrt{8}$ tidak berada dalam $C$ sehingga dapat ditulis
$\begin{aligned} \displaystyle \oint \dfrac{\cos z} {z(z^2-8)}~dz & = \oint \dfrac{\cos z}{z^2-8} \times \dfrac{dz}{z} \\ & = 2\pi i\left[\dfrac{\cos z}{z^2- 8}\right]_{z = 0} \\ & = 2\pi i\left[\dfrac{\cos 0}{0 -8}\right] \\ & = \boxed{-\dfrac{1}{4} \pi i} \end{aligned}$
Soal Nomor 16
Uraian deret Laurent dari fungsi $f(z) = \dfrac{3}{z^2 -iz}$ pada daerah $|z + i| < 1$ adalah $\cdots \cdot$
Perhatikan bahwa
$f(z) = \dfrac{3}{z^2 – iz} = \dfrac{3}{z(z- i)}.$
Titik singular fungsi ini adalah $z = 0$ dan $z = i$ yang letaknya TIDAK berada di luar daerah konvergensi $|z + i| < 1$ (lingkaran dengan pusat di $(0,1)$ dan berjari-jari $1$) sehingga kita menguraikan keduanya ini hanya dalam bentuk deret Taylor.
$$\begin{aligned} & \dfrac{3}{z(z + i)} = 3\left(\dfrac{-\dfrac{1}{i}} {z} + \dfrac{\dfrac{1}{i}} {z -i}\right) \\ & = -\dfrac{3}{i} \times \dfrac{1}{-i + (z + i)} + \dfrac{3}{i} \times \dfrac{1}{-2i + (z + i)} \\ & =-\dfrac{3}{i} \times \dfrac{1}{-i\left(1 + \dfrac{z + i}{-i}\right)} + \dfrac{3}{i} \times \dfrac{1}{-2i\left(1 + \dfrac{z+i}{-2i}\right)} \\ & = -3 \displaystyle \sum (-1)^n\left(\dfrac{z+i} {-i}\right)^n + \dfrac{3}{2} \times \sum (-1)^n\left(\dfrac{z+i} {-2i}\right)^n \\ & = \displaystyle \sum 3\left(\dfrac{z+i} {i} \right)^n + \sum \dfrac{3}{2}\left(\dfrac{z+i}{2i}\right)^n \\ & = \boxed{3 \sum (z + i)^n\left(\dfrac{1}{2^{n+1}i^n} – \dfrac{1}{i^n}\right)} \end{aligned}$$
Soal Nomor 17
Berapa banyak akar berbeda dari persamaan $z^{12} = 1$ yang bukan merupakan bilangan real?
Gunakan rumus pemfaktoran berikut.
$\boxed{\begin{aligned} a^2-b^2 & =(a+b) (a-b) \\ a^3+b^3 & =(a+b) (a^2-ab+b^2) \\ a^3-b^3 & = (a-b)(a^2+ab+b^2) \end{aligned}}$
Dari persamaan $z^{12} = 1$, kita peroleh
$$\begin{aligned} & z^{12} -1 = 0 \\ & \Leftrightarrow (z^6+1)(z^6-1) = 0 \\ & \Leftrightarrow (z^2+1)(z^4-z^2+1)(z^3-1)(z^3+1) = 0 \\ & \Leftrightarrow (z^2+1)(z^4-z^2+1)(z-1)(z^2+z+1)(z+1)(z^2-z+1) = 0. \end{aligned}$$Kita dapatkan $6$ bentuk faktor berbeda yang harus ditinjau satu per satu.
Bentuk: $z^2+1=0$
Penyelesaian untuk persamaan ini adalah $z = \pm \sqrt{-1} = \pm i$ (ada 2).
Bentuk: $z^4-z^2+1 = 0$
Misalkan $z^2 = x$, maka diperoleh persamaan kuadrat $x^2-x+1=0$. Diskriminannya adalah $D = (-1)^2-4(1)(1) = 1 -4 = -3$. Karena bernilai negatif, maka penyelesaian persamaan itu berupa bilangan kompleks. Dengan rumus ABC, diperoleh
$z = \pm \sqrt{\dfrac{1 \pm i\sqrt{3}} {2}}$ (ada 4).
Bentuk: $z-1=0$
Jelas bahwa persamaan di atas memiliki penyelesaian real, yaitu $z=1$.
Bentuk: $z^2+z+1=0$
Diskriminan persamaan kuadrat di atas adalah $D=1^2-4(1)(1)=-3$ sehingga penyelesaiannya berupa bilangan kompleks. Dengan rumus ABC, diperoleh
$z = \dfrac{-1 \pm i\sqrt{3}} {2}$ (ada 2).
Bentuk: $z+1=0$
Jelas bahwa persamaan di atas memiliki penyelesaian real, yaitu $z=-1$.
Bentuk: $z^2-z+1=0$
Diskriminan persamaan kuadrat di atas adalah $D=(-1)^2-4(1)(1)=-3$ sehingga penyelesaiannya berupa bilangan kompleks. Dengan rumus ABC, diperoleh
$z = \dfrac{1 \pm i\sqrt{3}} {2}$ (ada 2).
Dengan demikian, ada $\boxed{2+4+2+2=10}$ akar tak real berbeda yang memenuhi persamaan tersebut.
Alternatif Lain: Menggunakan Konsep Roots of Unity.
$z^n = 1$ untuk $n$ genap selalu memiliki $n$ solusi, dua di antaranya berupa akar real, yaitu $1$ dan $-1$, dan sisanya berupa akar tidak real.
Untuk itu, persamaan $z^{12} = 1$ memiliki $12$ solusi, dua di antaranya merupakan $z=1$ dan $z=-1$, dan sisanya, yaitu sebanyak $\boxed{12-2 = 10}$ solusi merupakan akar tak real.
Baca Juga: Kumpulan Soal ON MIPA-PT Matematika (Tahun 2006 – Sekarang)
Silakan beri tanggapan dan saran, tidak perlu sungkan. Mohon juga diinformasikan melalui kolom komentar ini jika ada kesalahan pengetikan sekecil apa pun, seperti kesalahan pengetikan, kode LaTeX yang tidak berjalan, atau kesalahan konsep dan pembahasan soal. Terima kasih. Ganbatte!
Untuk no. 13, definisi f^(n) nya gimana ya? Bukankah turunan ke-n dr f(z)?
Terimakasih ilmunya